Read by QxMD icon Read

Neuron-glia interactions

Naiyan Chen, Hiroki Sugihara, Jinah Kim, Zhanyan Fu, Boaz Barak, Mriganka Sur, Guoping Feng, Weiping Han
Multiple hypothalamic neuronal populations that regulate energy balance have been identified. Although hypothalamic glia exist in abundance and form intimate structural connections with neurons, their roles in energy homeostasis are less known. Here we show that selective Ca(2+) activation of glia in the mouse arcuate nucleus (ARC) reversibly induces increased food intake while disruption of Ca(2+) signaling pathway in ARC glia reduces food intake. The specific activation of ARC glia enhances the activity of agouti-related protein/neuropeptide Y (AgRP/NPY)-expressing neurons but induces no net response in pro-opiomelanocortin (POMC)-expressing neurons...
October 18, 2016: ELife
Keren Gueta, Ahuvit David, Tsadok Cohen, Yotam Menuchin-Lasowski, Hila Nobel, Ginat Narkis, LiQi Li, Paul Love, Jimmy de Melo, Seth Blackshaw, Heiner Westphal, Ruth Ashery-Padan
The Lim domain binding proteins (Ldbs) are key cofactor proteins that assemble with LIM domains of the LMO/LIM-HD family to form functional complexes that regulate cell proliferation and differentiation throughout the CNS. Here, using conditional mutagenesis and comparative phenotypic analysis, we analyze the function of Ldb1 and Ldb2 in mouse retinal development, and demonstrate overlapping and specific functions of both genes. We show that Ldb1 interacts with Lhx2 in the embryonic retina and that both Ldb1 and Ldb2, probably functioning with Lhx2 in a complex, play a key role in maintaining the pool of retinal progenitor cells...
October 3, 2016: Development
Yoojin Seo, Hyung-Sik Kim, Insung Kang, Soon Won Choi, Tae-Hoon Shin, Ji-Hee Shin, Byung-Chul Lee, Jin Young Lee, Jae-Jun Kim, Myung Geun Kook, Kyung-Sun Kang
Microglia can aggravate olfactory dysfunction by mediating neuronal death in the olfactory bulb (OB) of a murine model of Niemann-Pick disease type C1 (NPC1), a fatal neurodegenerative disorder accompanied by lipid trafficking defects. In this study, we focused on the crosstalk between neurons and microglia to elucidate the mechanisms underlying extensive microgliosis in the NPC1-affected brain. Microglia in the OB of NPC1 mice strongly expressed CX3C chemokine receptor 1 (Cx3cr1), a specific receptor for the neural chemokine C-X3-C motif ligand 1 (Cx3cl1)...
September 30, 2016: Glia
Saeed Haghiri, Arash Ahmadi, Mehrdad Saif
Glial cells, also known as neuroglia or glia, are non-neuronal cells providing support and protection for neurons in the central nervous system (CNS). They also act as supportive cells in the brain. Among a variety of glial cells, the star-shaped glial cells, i.e., astrocytes, are the largest cell population in the brain. The important role of astrocyte such as neuronal synchronization, synaptic information regulation, feedback to neural activity and extracellular regulation make the astrocytes play a vital role in brain disease...
September 20, 2016: IEEE Transactions on Biomedical Circuits and Systems
Ting-Hao Huang, Tarciso Velho, Carlos Lois
We used a synthetic genetic system based on ligand-induced intramembrane proteolysis to monitor cell-cell contacts in animals. Upon ligand-receptor interaction in sites of cell-cell contact, the transmembrane domain of an engineered receptor is cleaved by intramembrane proteolysis and releases a protein fragment that regulates transcription in the interacting partners. We demonstrate that the system can be used to regulate gene expression between interacting cells both in vitro and in vivo, in transgenic Drosophila We show that the system allows for detection of interactions between neurons and glia in the Drosophila nervous system...
September 22, 2016: Development
Ming-Shuo Chen, Hyosung Kim, Léonard Jagot-Lacoussiere, Patrice Maurel
Axo-glial interactions are critical for myelination and the domain organization of myelinated fibers. Cell adhesion molecules belonging to the Cadm family, and in particular Cadm3 (axonal) and its heterophilic binding partner Cadm4 (Schwann cell), mediate these interactions along the internode. Using targeted shRNA-mediated knockdown, we show that the removal of axonal Cadm3 promotes Schwann cell myelination in the in vitro DRG neuron/Schwann cell myelinating system. Conversely, over-expressing Cadm3 on the surface of DRG neuron axons results in an almost complete inability by Schwann cells to form myelin segments...
September 23, 2016: Glia
Maria D Purice, Sean D Speese, Mary A Logan
Advanced age is the greatest risk factor for neurodegenerative disorders, but the mechanisms that render the senescent brain vulnerable to disease are unclear. Glial immune responses provide neuroprotection in a variety of contexts. Thus, we explored how glial responses to neurodegeneration are altered with age. Here we show that glia-axon phagocytic interactions change dramatically in the aged Drosophila brain. Aged glia clear degenerating axons slowly due to low phosphoinositide-3-kinase (PI3K) signalling and, subsequently, reduced expression of the conserved phagocytic receptor Draper/MEGF10...
September 20, 2016: Nature Communications
U Lalo, O Palygin, A Verkhratsky, S G N Grant, Y Pankratov
Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca(2+)-dependent mechanism...
2016: Scientific Reports
K N Dodds, E A H Beckett, S F Evans, P M Grace, L R Watkins, M R Hutchinson
In the central nervous system, bidirectional signaling between glial cells and neurons ('neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions...
2016: Translational Psychiatry
Daniel Simão, Ana P Terrasso, Ana P Teixeira, Catarina Brito, Ursula Sonnewald, Paula M Alves
The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle...
2016: Scientific Reports
Beatrice Terni, Francisco José López-Murcia, Artur Llobet
During the embryonic development of the nervous system there is a massive formation of synapses. However, the exuberant connectivity present after birth must be pruned during postnatal growth to optimize the function of neuronal circuits. Whilst glial cells play a fundamental role in the formation of early synaptic contacts, their contribution to developmental modifications of established synapses is not well understood. The present review aims to highlight the various roles of glia in the developmental refinement of embryonic synaptic connectivity...
September 3, 2016: Brain Research Bulletin
Erika Gunnar, Caroline Bivik, Annika Starkenberg, Stefan Thor
Neural progenitors typically divide asymmetrically to renew themselves, while producing daughters with more limited potential. In the Drosophila embryonic ventral nerve cord, neuroblasts initially produce daughters that divide once to generate two neurons/glia (type I proliferation mode). Subsequently, many neuroblasts switch to generating daughters that differentiate directly (type 0). This programmed type I>0 switch is controlled by Notch signaling, triggered at a distinct point of lineage progression in each neuroblast...
August 30, 2016: Development
Hae Ung Lee, Sudip Nag, Agata Blasiak, Yan Jin, Nitish V Thakor, In Hong Yang
Myelination is governed by neuron-glia communication, which in turn is modulated by neural activity. The exact mechanisms remain elusive. We developed a novel in vitro optogenetic stimulation platform that facilitates subcellular activity induction in hundreds of neurons simultaneously. The light isolation was achieved by creating a bio-compatible, light-absorbent, black microfluidic device integrated with a programmable, high-power LED array. The system was applied to a compartmentalized culture of primary neurons whose distal axons were interacting with oligodendrocyte precursor cells...
August 29, 2016: ACS Chemical Neuroscience
Anne-Kathrin Gellner, Janine Reis, Brita Fritsch
Non-invasive electrical brain stimulation by application of direct current (DCS) promotes plasticity in neuronal networks in vitro and in in vivo. This effect has been mainly attributed to the direct modulation of neurons. Glia represents approximately 50% of cells in the brain. Glial cells are electrically active and participate in synaptic plasticity. Despite of that, effects of DCS on glial structures and on interaction with neurons are only sparsely investigated. In this perspectives article we review the current literature, present own dose response data and provide a framework for future research from two points of view: first, the direct effects of DCS on glia and second, the contribution of glia to DCS related neuronal plasticity...
2016: Frontiers in Cellular Neuroscience
Joy Guedia, Paola Brun, Sukhada Bhave, Sylvia Fitting, Minho Kang, William L Dewey, Kurt F Hauser, Hamid I Akbarali
The loss of gut epithelium integrity leads to translocation of microbes and microbial products resulting in immune activation and drives systemic inflammation in acquired immunodeficiency syndrome (AIDS) patients. Although viral loads in HIV patients are significantly reduced in the post-cART era, inflammation and immune activation persist and can lead to morbidity. Here, we determined the interactive effects of the viral protein HIV-1 Tat and lipopolysaccharide (LPS) on enteric neurons and glia. Bacterial translocation was significantly enhanced in Tat-expressing (Tat+) mice...
2016: Scientific Reports
Isa Guha, Ivana Slamova, Soyon Chun, Arthur Clegg, Michal Golos, Chris Thrasivoulou, J Paul Simons, Raya Al-Shawi
During the course of normal aging, certain populations of nerve growth factor (NGF)-responsive neurons become selectively vulnerable to cell death. Studies using dissociated neurons isolated from neonates have shown that c-Jun N-terminal kinases (JNKs) are important in regulating the survival and neurite outgrowth of NGF-responsive sympathetic neurons. Unlike neonatal neurons, adult sympathetic neurons are not dependent on NGF for their survival. Moreover, the NGF precursor, proNGF, is neurotoxic for aging but not young adult NGF-responsive neurons...
October 2016: Neurobiology of Aging
Francesca Boscia, Gulnaz Begum, Giuseppe Pignataro, Rossana Sirabella, Ornella Cuomo, Antonella Casamassa, Dandan Sun, Lucio Annunziato
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases...
October 2016: Glia
Catherine Le Berre-Scoul, Julien Chevalier, Elena Oleynikova, François Cossais, Sophie Talon, Michel Neunlist, Hélène Boudin
In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty to obtain a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs...
July 20, 2016: Journal of Physiology
Pierre B Cattenoz, Angela Giangrande
Master genes are known to induce the differentiation of a multipotent cell into a specific cell type. These molecules are often transcription factors that switch on the regulatory cascade that triggers cell specification. Gcm was first described as the master gene of the glial fate in Drosophila as it induces the differentiation of neuroblasts into glia in the developing nervous system. Later on, Gcm was also shown to regulate the differentiation of blood, tendon and peritracheal cells as well as that of neuronal subsets...
October 2016: Fly
D M Skytt, A K Toft-Kehler, C T Brændstrup, S Cejvanovic, I S Gurubaran, L H Bergersen, M Kolko
Glia-neuron partnership is important for inner retinal homeostasis and any disturbances may result in retinal ganglion cell (RGC) death. Müller cells support RGCs with essential functions such as removing excess glutamate and providing energy sources. The aim was to explore the impact of Müller cells on RGC survival. To investigate the Müller cell/RGC interactions we developed a coculture model, in which primary Müller cells were grown in inserts on top of pure primary RGC cultures. The impact of starvation and mitochondrial inhibition on the Müller cell ability to protect RGCs was studied...
2016: BioMed Research International
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"