Read by QxMD icon Read

Lysosome and migration

Ewan MacDonald, Louise Brown, Arnaud Selvais, Han Liu, Thomas Waring, Daniel Newman, Jessica Bithell, Douglas Grimes, Sylvie Urbé, Michael J Clague, Tobias Zech
Transmembrane proteins in the sorting endosome are either recycled to their point of origin or destined for lysosomal degradation. Lysosomal sorting is mediated by interaction of ubiquitylated transmembrane proteins with the endosomal sorting complex required for transport (ESCRT) machinery. In this study, we uncover an alternative role for the ESCRT-0 component hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) in promoting the constitutive recycling of transmembrane proteins. We find that endosomal localization of the actin nucleating factor Wiscott-Aldrich syndrome protein and SCAR homologue (WASH) requires HRS, which occupies adjacent endosomal subdomains...
June 11, 2018: Journal of Cell Biology
Azure Yarbrough, Katherine Maringer, Entsar J Saheb, Sanaa Jawed, John Bush
Rab GTPases are essential regulators of many cellular processes and play an important role in downstream signaling vital to proper cell function. We sought to elucidate the role of novel D. discoideum GTPase RabS. Cell lines over-expressing DdRabS and expressing DdRabS N137I (dominant negative (DN)) proteins were generated, and it was determined that DdRabS localized to endosomes, ER-Golgi membranes, and the contractile vacuole system. It appeared to function in vesicular trafficking, and the secretion of lysosomal enzymes...
May 28, 2018: Biology
Qiuling Dong, Huaqing Zhang, Yue Han, Aouameur Djamila, Hao Cheng, Zhiyuan Tang, Jianping Zhou, Yang Ding
Metastatic cancer is difficult to defeat with current treatments due to lack of etiological therapeutics and efficient delivery platforms. Employing tumor microenvironment in programming intelligent nanosystems has attracted considerable attention for combinative antitumor therapy. Herein, we proposed a core-shell based drug depot consisting of micellar core and crosslinked-gel shell for site-specific shuttling of paclitaxel (PTX) and KIAA1199 specific shRNA (shKIAA). Poly (e-caprolactone) were grafted with branched polyethylenimine (PEI-PCL) as micellar core, into which hydrophobic PTX was embedded; while shKIAA, a reliable RNAi regimen for metastatic cell inhibition was condensed with PEI through electrostatic interaction; and then photo-crosslinked hyaluronic acid (m-HA) was further coated as shell...
May 24, 2018: Journal of Controlled Release: Official Journal of the Controlled Release Society
Gulinur Abdulrehman, Kaiyue Xv, Yuhua Li, Ling Kang
The aim of this study is to investigate the antitumor effects and possible mechanisms of meta-tetrahydroxyphenylchlorin-mediated photodynamic therapy (m-THPC-PDT) on human primary (SW480) and metastatic (SW620) colon cancer cell lines. SW480 and SW620 cells were incubated with various concentrations of m-THPC, followed by photodynamic irradiation. Subcellular localization of m-THPC in cells was observed with confocal laser scanning microscopy (CLSM). Photocytotoxicity of m-THPC in the two cells was investigated by using MTT assay...
May 24, 2018: Lasers in Medical Science
C Randall Harrell, Bojana Simovic Markovic, Crissy Fellabaum, Aleksandar Arsenijevic, Valentin Djonov, Nebojsa Arsenijevic, Vladislav Volarevic
Mesenchymal stem cells (MSCs) were, due to their immunomodulatory and pro-angiogenic characteristics, extensively explored as new therapeutic agents in cell-based therapy of uveitis, glaucoma, retinal and ocular surface diseases.Since it was recently revealed that exosomes play an important role in biological functions of MSCs, herewith we summarized current knowledge about the morphology, structure, phenotype and functional characteristics of MSC-derived exosomes emphasizing their therapeutic potential in the treatment of eye diseases...
May 18, 2018: Advances in Experimental Medicine and Biology
Fan Yang, Yang Xing, Yinan Li, Xiaoning Chen, Zhilong Ai, Yuanyan Wei, Jianhai Jiang
CD133, a widely known marker for cancer stem cells, has recently been found in extracellular vesicles. However, the mechanisms underlying CD133 translocation to the extracellular space remain largely unknown. Here, we report that CD133 is mono-ubiquitinated. Ubiquitination occurs primarily on complex glycosylated CD133. Lysine 848 residue at the intracellular carboxyl terminal is one of the sites for CD133 ubiquitination. K848R mutation does not affect CD133 degradation by the lysosomal pathway, but significantly reduces CD133 secretion...
May 14, 2018: Molecular and Cellular Biology
Joe Truong Nguyen, Connor Ray, Alexandra Lucienne Fox, Daniela Baccelli Mendonça, Jin Koo Kim, Paul H Krebsbach
Nematode EAK-7 (enhancer-of- akt -1-7) regulates dauer formation and controls life span; however, the function of the human ortholog mammalian EAK-7 (mEAK-7) is unknown. We report that mEAK-7 activates an alternative mechanistic/mammalian target of rapamycin (mTOR) signaling pathway in human cells, in which mEAK-7 interacts with mTOR at the lysosome to facilitate S6K2 activation and 4E-BP1 repression. Despite interacting with mTOR and mammalian lethal with SEC13 protein 8 (mLST8), mEAK-7 does not interact with other mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2) components; however, it is essential for mTOR signaling at the lysosome...
May 2018: Science Advances
Yasuhito Ikegawa, Atsushi Shiraishi, Yasuhito Hayashi, Akiyoshi Ogimoto, Yuichi Ohashi
Purpose: To compare the morphology of two types of vortex keratopathy: amiodarone-induced keratopathy and the Fabry disease-associated keratopathy. Patients and Methods: Eight patients who were receiving oral amiodarone therapy and 3 patients with Fabry disease, a mother and her 2 daughters, were examined by slit-lamp biomicroscopy and in vivo confocal microscopy (IVCM) regularly. Results: Amiodarone-induced keratopathy developed in 7 of the 8 patients, and it was detected as early as 7 days by IVCM and 14 days by slit-lamp biomicroscopy...
2018: Journal of Ophthalmology
Peng Pan, Ting Chen, Yanmin Zhang, Zhengyu Qi, Jie Qin, Guanghui Cui, Xin Guo
Tumor cells and embryonic stem cells (ESCs) have similar transcription mechanisms. LIN28A is an important factor in tumor cells and ESCs, it is an inhibitor of intracellular endoplasmic reticulum (ER)‑related protein translation in ESCs. The present study aimed to examine the effects of LIN28A on an ER‑related protein, lysosome‑associated membrane glycoprotein 1 (LAMP1), in human bladder cancer cells and mouse (m)ESCs, using reverse transcription‑quantitative polymerase chain reaction and western blotting to detect the expression of LAMP1 mRNA and protein, respectively, following LIN28A knockdown...
May 3, 2018: Molecular Medicine Reports
Wei-Wei Ren, Dan-Dan Li, Xiao-Long Li, Ya-Ping He, Le-Hang Guo, Lin-Na Liu, Hui-Xiong Xu, Li-Ping Sun, Xiao-Ping Zhang
EVA1A (also known as transmembrane protein 166) is a transmembrane protein involved in the regulation of autophagy that acts as an adaptor protein to recruit or bind proteins in the lysosome or endoplasmic reticulum. In the present study, we identified EVA1A as a target of microRNA-125b (miR-125b), a member of a highly conserved family of miRNAs that has been proposed as a biomarker for hepatocellular carcinoma (HCC). Analysis of oxaliplatin-sensitive and oxaliplatin-resistant HCC cell lines showed that miR-125b is downregulated in resistant cells and its overexpression in sensitive cells decreased resistance to oxaliplatin by inhibiting cell proliferation, migration and epithelial-mesenchymal transition (EMT)...
May 10, 2018: Cell Death & Disease
Qingqing Sun, Koki Kanehira, Akiyoshi Taniguchi
Nanoparticles (NPs) elicit various physiological responses in cellular environment, and the effect of NPs on cell migration is of high interest. In this work, the effects of NPs on cell migration and their possible mechanisms were studied. Here, we showed that after exposure to pegylated titanium dioxide nanoparticles (TiO2 -PEG NPs, where PEG stands for the polyethylene glycol), NCI-H292 cells exhibited slower migration than control cells. Furthermore, larger NPs inhibited cell migration much stronger than smaller NPs...
2018: Science and Technology of Advanced Materials
Masoumeh Hosseini, Hossein Najmabadi, Kimia Kahrizi
Calpains are a group of non-lysosomal Ca2+ -dependent cysteine proteases with numerous substrates. Calpains have been identified in almost all eukaryotes and bacteria but not in archaebacteria. In the human genome, this group of enzymes has 15 isoforms and is present ubiquitously and demonstrates tissue-specific patterns of expression. Calpains are involved in different physiological and pathological processes such as cell proliferation, migration, invasion, apoptosis and signal transduction and their roles in various disorders have been reported...
April 1, 2018: Archives of Iranian Medicine
Guillermo A Herrera, Jiamin Teng, Chun Zeng, Hongzhi Xu, Man Liang, J Steven Alexander, Bing Liu, Chris Boyer, Elba A Turbat-Herrera
Mesangiopathies produced by glomerulopathic monoclonal immunoglobulin light chains (GLCs) acting on the glomerular mesangium produce two characteristic lesions: AL-amyloidosis (AL-Am) and light chain deposition disease (LCDD). In both cases, the pathology is centered in the mesangium, where initial and progressive damage occurs. In AL-Am the mesangial matrix is destroyed and replaced by amyloid fibrils and in LCDD, the mesangial matrix is increased and remodeled. The collagen IV rich matrix is replaced by tenascin...
May 2018: Ultrastructural Pathology
Gewei Lian, Anjen Chenn, Victor Ekuta, Sneha Kanaujia, Volney Sheen
Although neural progenitor proliferation along the ventricular zone is regulated by β-catenin through Wnt signaling, the cytoskeletal mechanisms that regulate expression and localization of these proteins are not well understood. Our prior studies have shown that loss of the actin-binding Filamin A (FlnA) and actin-nucleating protein Formin 2 (Fmn2) impairs endocytosis of low-density-lipoprotein-receptor-related protein 6 (Lrp6), thereby disrupting β-catenin activation, resulting in decreased brain size. Here, we report that activated RhoA-GTPase disengages Fmn2 N- to C-terminal binding to promote Fmn2 activation and redistribution into lysosomal vesicles...
April 5, 2018: Cerebral Cortex
Wen-Juan Yi, Meng-Yun Su, Ying Shi, Shan Jiang, Shi-Zheng Xu, Tie-Chi Lei
Melanosomes are membrane-bound intracellular organelles that are uniquely generated by melanocytes (MCs) in the basal layer of human epidermis. Highly pigmented mature melanosomes are transferred from MCs to keratinocytes (KCs), and then positioned in the supra-nuclear region to ensure protection against ultraviolet radiation (UVR). However, the molecular mechanism underlying melanosome (or melanin pigment) transfer remains enigmatic. Emerging evidence shows that exo-/endo-cytosis of the melanosome core (termed melanocore) has been considered as the main transfer manner between MCs and KCs...
April 25, 2018: Cell Cycle
Lixiang Sun, Xiaohui Xu, Yongjun Chen, Yuxia Zhou, Ran Tan, Hantian Qiu, Liting Jin, Wenyi Zhang, Rong Fan, Wanjin Hong, Tuanlao Wang
The small GTPase Rab34 regulates spatial distribution of the lysosomes, secretion, and macropinocytosis. In this study, we found that Rab34 is over-expressed in aggressive breast cancer cells, implying a potential role of Rab34 in breast cancer. Silencing Rab34 by shRNA inhibits cell migration, invasion, and adhesion of breast cancer cells. Rab34 specifically binds to the cytoplasmic tail of integrin β3, and depletion of Rab34 promotes the degradation of integrin β3. Interestingly, EGF induces the translocation of Rab34 to the membrane ruffle, which is greatly enhanced by the expression of Src kinase...
April 6, 2018: Oncogene
Elena Rainero
Integrins are the key mediators of cell-extracellular matrix (ECM) interaction, linking the ECM to the actin cytoskeleton. Besides localizing at the cell surface, they can be internalized and transported back to the plasma membrane (recycled) or delivered to the late endosomes/lysosomes for degradation. We and others have shown that integrin can be endocytosed together with their ECM ligands. In this short review, I will highlight how extracellular protein (including ECM) endocytosis impinges on the activation of the mechanistic target of rapamycin (mTOR) pathway, a master regulator of cell metabolism and growth...
February 2018: International Journal of Experimental Pathology
Jeffrey Zielich, Elena Tzima, Eva Ayla Schröder, Faten Jemel, Barbara Conradt, Eric J Lambie
P5B ATPases are present in the genomes of diverse unicellular and multicellular eukaryotes, indicating that they have an ancient origin, and that they are important for cellular fitness. Inactivation of ATP13A2, one of the four human P5B ATPases, leads to early-onset Parkinson's disease (Kufor-Rakeb Syndrome). The presence of an invariant PPALP motif within the putative substrate interaction pocket of transmembrane segment M4 suggests that all P5B ATPases might have similar transport specificity; however, the identity of the transport substrate(s) remains unknown...
2018: PloS One
Yumao Jiang, Yue Jiao, Yang Liu, Meiyu Zhang, Zhiguo Wang, Yujuan Li, Tao Li, Xiaoliang Zhao, Danqiao Wang
As shown in our previous study, sinomenine hydrochloride (SH), the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae ), initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM) for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays...
March 14, 2018: International Journal of Molecular Sciences
Yanbo Fan, Haocheng Lu, Wenying Liang, Minerva T Garcia-Barrio, Yanhong Guo, Ji Zhang, Tianqing Zhu, Yibai Hao, Jifeng Zhang, Y Eugene Chen
RATIONALE: Postischemic angiogenesis is critical to limit the ischemic tissue damage and improve the blood flow recovery. The regulation and the underlying molecular mechanisms of postischemic angiogenesis are not fully unraveled. TFEB (transcription factor EB) is emerging as a master gene for autophagy and lysosome biogenesis. However, the role of TFEB in vascular disease is less understood. OBJECTIVE: We aimed to determine the role of endothelial TFEB in postischemic angiogenesis and its underlying molecular mechanism...
March 30, 2018: Circulation Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"