Read by QxMD icon Read

crispr cas9

Suhyung Cho, Donghui Choe, Eunju Lee, Sun Chang Kim, Bernhard Ø Palsson, Byung-Kwan Cho
Along with functional advances in the use of CRISPR/Cas9 for genome editing, endonuclease-deficient Cas9 (dCas9) has provided a versatile molecular tool for exploring gene functions. In principle, differences in cell phenotypes that result from the RNA-guided modulation of transcription levels by dCas9 are critical for inferring with gene function; however, the effect of intracellular dCas9 expression on bacterial morphology has not been systematically elucidated. Here, we observed unexpected morphological changes in Escherichia coli mediated by dCas9, which were then characterized using RNA sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq)...
March 15, 2018: ACS Synthetic Biology
Teresa Cruz-Bustos, Silvia N J Moreno, Roberto Docampo
Membrane proteins in trypanosomatids are, in general, weakly expressed and confirmation of their subcellular localization frequently requires their overexpression with epitope tags. However, overexpression can lead to mislocalization of the probes. Viswanathan et al. (Nat. Methods, 2015) described high performance tags for localization of weakly expressed proteins. We report here the use of these protein tags, named "spaghetti monster", for CRISPR /Cas9-mediated C-terminal endogenous tagging of Trypanosoma cruzi to localize two weakly expressed transient receptor potential (TRP) channels to acidic compartments...
March 15, 2018: Journal of Eukaryotic Microbiology
Shashank Gandhi, Florian Razy-Krajka, Lionel Christiaen, Alberto Stolfi
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has emerged as a revolutionary tool for fast and efficient targeted gene knockouts and genome editing in almost any organism. The laboratory model tunicate Ciona is no exception. Here, we describe our latest protocol for the design, implementation, and evaluation of successful CRISPR/Cas9-mediated gene knockouts in somatic cells of electroporated Ciona embryos. Using commercially available reagents, publicly accessible plasmids, and free web-based software applications, any Ciona researcher can easily knock out any gene of interest in their favorite embryonic cell lineage...
2018: Advances in Experimental Medicine and Biology
Keita Yoshida, Nicholas Treen
Targeted mutagenesis of genes-of-interest is a powerful method of addressing the functions of genes. Genome editing techniques, such as transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems, have enabled this approach in various organisms because of their ease of use. In the ascidian, Ciona intestinalis, recent studies show that TALEN-based knockout can be applied to establishing both mutant lines and tissue-specific knockout for addressing gene functions...
2018: Advances in Experimental Medicine and Biology
Shencun Fang, Huifang Guo, Yusi Cheng, Zewei Zhou, Wei Zhang, Bing Han, Wei Luo, Jing Wang, Weiping Xie, Jie Chao
Excessive proliferation and migration of fibroblasts contribute to pulmonary fibrosis in silicosis, and both epithelial cells and endothelial cells participate in the accumulation of fibroblasts via the epithelial-mesenchymal transition (EMT) and the endothelial-mesenchymal transition (EndMT), respectively. A mouse endothelial cell line (MML1) was exposed to silicon dioxide (SiO2 , 50 μg/cm2 ), and immunofluorescence and western blot analyses were performed to evaluate levels of specific endothelial and mesenchymal markers and to elucidate the mechanisms by which SiO2 induces the EndMT...
March 14, 2018: Cell Death & Disease
Neftali Vazquez, Lilia Sanchez, Rebecca Marks, Eduardo Martinez, Victor Fanniel, Alma Lopez, Andrea Salinas, Itzel Flores, Jesse Hirschmann, Robert Gilkerson, Erin Schuenzel, Robert Dearth, Reginald Halaby, Wendy Innis-Whitehouse, Megan Keniry
BACKGROUND: Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems are found in prokaryotes to defend cells from foreign DNA. CRISPR Cas9 systems have been modified and employed as genome editing tools in wide ranging organisms. Here, we provide a detailed protocol to truncate genes in mammalian cells using CRISPR Cas9 editing. We describe custom donor vector construction using Gibson assembly with the commonly utilized pcDNA3 vector as the backbone...
March 14, 2018: BMC Molecular Biology
Eva K Brinkman, Arne N Kousholt, Tim Harmsen, Christ Leemans, Tao Chen, Jos Jonkers, Bas van Steensel
Template-directed CRISPR/Cas9 editing is a powerful tool for introducing subtle mutations in genomes. However, the success rate of incorporation of the desired mutations at the target site is difficult to predict and therefore must be empirically determined. Here, we adapted the widely used TIDE method for quantification of templated editing events, including point mutations. The resulting TIDER method is a rapid, cheap and accessible tool for testing and optimization of template-directed genome editing strategies...
March 10, 2018: Nucleic Acids Research
Xinxing Zhang, Yuting Wang, David H Perez, Rachel A Jones Lipinski, Rebecca A Butcher
Caenorhabditis elegans produces a complex mixture of ascaroside pheromones to control its development and behavior. Acyl-CoA oxidases, which participate in β-oxidation cycles that shorten the side chains of the ascarosides, regulate the mixture of pheromones produced. Here, we use CRISPR-Cas9 to make specific nonsense and missense mutations in acox genes and determine the effect of these mutations on ascaroside production in vivo. Ascaroside production in acox-1.1 deletion and nonsense strains, as well as a strain with a missense mutation in a catalytic residue, confirms the central importance of ACOX-1...
March 14, 2018: ACS Chemical Biology
Scot P Ouellette
Chlamydia is an obligate intracellular bacterium and, as such, has significantly reduced its genome size and content. Although recent advances have allowed for transformation of C. trachomatis with an exogenous plasmid, genetic manipulation of Chlamydia remains challenging. In particular, the ability to create conditional knockouts has not been developed. This is particularly important given the likelihood that most genes within the small genome of Chlamydia may be essential. Here, I describe the feasibility of using CRISPR interference (CRISPRi) based on the catalytically inactive Cas9 variant (dCas9) of Staphylococcus aureus to inducibly, and reversibly, repress gene expression in C...
2018: Frontiers in Cellular and Infection Microbiology
Magdalena Dabrowska, Wojciech Juzwa, Wlodzimierz J Krzyzosiak, Marta Olejniczak
Huntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in the first exon of the huntingtin gene ( HTT ). The accumulation of polyglutamine-rich huntingtin proteins affects various cellular functions and causes selective degeneration of neurons in the striatum. Therapeutic strategies used to date to silence the expression of mutant HTT include antisense oligonucleotides, RNA interference-based approaches and, recently, genome editing with the CRISPR/Cas9 system...
2018: Frontiers in Neuroscience
Julius Durr, Ranjith Papareddy, Keiji Nakajima, Jose Gutierrez-Marcos
Genome editing using CRISPR/Cas9 is considered the best instrument for genome engineering in plants. This methodology is based on the nuclease activity of Cas9 that is guided to specific genome sequences by single guide RNAs (sgRNAs) thus enabling researchers to engineer simple mutations or large chromosomal deletions. Current methodologies for targeted genome editing in plants using CRISPR/Cas9 are however largely inefficient, mostly due to low Cas9 activity, variable sgRNA efficiency and low heritability of genetic lesions...
March 13, 2018: Scientific Reports
Motoki Takaku, Sara A Grimm, John D Roberts, Kaliopi Chrysovergis, Brian D Bennett, Page Myers, Lalith Perera, Charles J Tucker, Charles M Perou, Paul A Wade
GATA3 is frequently mutated in breast cancer; these mutations are widely presumed to be loss-of function despite a dearth of information regarding their effect on disease course or their mechanistic impact on the breast cancer transcriptional network. Here, we address molecular and clinical features associated with GATA3 mutations. A novel classification scheme defines distinct clinical features for patients bearing breast tumors with mutations in the second GATA3 zinc-finger (ZnFn2). An engineered ZnFn2 mutant cell line by CRISPR-Cas9 reveals that mutation of one allele of the GATA3 second zinc finger (ZnFn2) leads to loss of binding and decreased expression at a subset of genes, including Progesterone Receptor...
March 13, 2018: Nature Communications
Guoyu Yu, Chien-Jui Cheng, Song-Chang Lin, Yu-Chen Lee, Daniel E Frigo, Li-Yuan Yu-Lee, Gary E Gallick, Mark A Titus, Leta K Nutt, Sue-Hwa Lin
Although emerging evidence suggests a potential role of calcium/calmodulin-dependent kinase II (CaMKII) in prostate cancer (PCa), its role in PCa tumorigenesis is largely unknown. Here we examine whether the acetyl CoA-CaMKII pathway, first described in frog oocytes, promotes PCa tumorigenesis. In human PCa specimens, metastatic PCa expressed higher levels of active CaMKII compared to localized PCa. Correspondingly, basal CaMKII activity was significantly higher in the more tumorigenic PC3 and PC3-mm2 cells relative to the less tumorigenic LNCaP and C4-2B4 cells...
March 13, 2018: Cancer Research
Jean-François Boisclair Lachance, Jemma L Webber, Lu Hong, Aaron Dinner, Ilaria Rebay
Cis -regulatory modules (CRMs) are defined by unique combinations of transcription factor-binding sites. Emerging evidence suggests that the number, affinity, and organization of sites play important roles in regulating enhancer output and, ultimately, gene expression. Here, we investigate how the cis -regulatory logic of a tissue-specific CRM responsible for even-skipped ( eve ) induction during cardiogenesis organizes the competing inputs of two E-twenty-six (ETS) members: the activator Pointed (Pnt) and the repressor Yan...
March 13, 2018: Genes & Development
Jun Sun, Qingzhuo Wang, Yu Jiang, Zhiqiang Wen, Lirong Yang, Jianping Wu, Sheng Yang
BACKGROUND: The soil bacterium Pseudomonas putida KT2440 is a "generally recognized as safe"-certified strain with robust property and versatile metabolism. Thus, it is an ideal candidate for synthetic biology, biodegradation, and other biotechnology applications. The known genome editing approaches of Pseudomonas are suboptimal; thus, it is necessary to develop a high efficiency genome editing tool. RESULTS: In this study, we established a fast and convenient CRISPR-Cas9 method in P...
March 13, 2018: Microbial Cell Factories
Alison M Earley, Cameron T Dixon, Celia E Shiau
FOXQ1 is a member of the forkhead-box transcription factor family that has important functions in development, cancer, aging, and many cellular processes. The role of FOXQ1 in cancer biology has raised intense interest, yet much remains poorly understood. We investigated the possible function of the two zebrafish orthologs (foxq1a and foxq1b) of human FOXQ1 in innate immune cell development and function. We employed CRISPR-Cas9 targeted mutagenesis to create null mutations of foxq1a and foxq1b in zebrafish...
2018: PloS One
Amy E Campbell, Sean C Shadle, Sujatha Jagannathan, Jong-Won Lim, Rebecca Resnick, Rabi Tawil, Silvère M van der Maarel, Stephen J Tapscott
The DUX4 transcription factor is encoded by a retrogene embedded in each unit of the D4Z4 macrosatellite repeat. DUX4 is normally expressed in the cleavage-stage embryo, whereas chromatin repression prevents DUX4 expression in most somatic tissues. Failure of this repression causes facioscapulohumeral muscular dystrophy (FSHD) due to mis-expression of DUX4 in skeletal muscle. In this study, we used CRISPR/Cas9 engineered chromatin immunoprecipitation (enChIP) locus-specific proteomics to characterize D4Z4-associated proteins...
March 13, 2018: ELife
Zhi-Jie Wu, Xin Zhao, Lauren G Banaszak, Fernanda Gutierrez-Rodrigues, Keyvan Keyvanfar, Shou-Guo Gao, Diego Quinones Raffo, Sachiko Kajigaya, Neal S Young
Additional sex combs-like 1 (ASXL1) is a well‑known tumor suppressor gene and epigenetic modifier. ASXL1 mutations are frequent in myeloid malignances; these mutations are risk factors for the development of myelodysplasia and also appear as small clones during normal aging. ASXL1 appears to act as an epigenetic regulator of cell survival and myeloid differentiation; however, the molecular mechanisms underlying the malignant transformation of cells with ASXL1 mutations are not well defined. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome editing, heterozygous and homozygous ASXL1 mutations were introduced into human U937 leukemic cells...
April 2018: International Journal of Oncology
Masami Yamamoto, Sachiyo Nomura, Akihiro Hosoi, Koji Nagaoka, Tamaki Iino, Tomohiko Yasuda, Tomoko Saito, Hirokazu Matsushita, Eiji Uchida, Yasuyuki Seto, James R Goldenring, Kazuhiko Kakimi, Masae Tatematsu, Tetsuya Tsukamoto
Previously no mouse gastric cancer cell lines have been available for transplantation into C57BL/6 mice. However, a gastric cancer model in immunocompetent mice would be useful for analyzing putative therapies.MNU was given in drinking water to C57BL/6 mice and p53 heterozygous knockout mice. Only one tumor from a p53 knockout mouse could be cultured and the cells are subcutaneously transplantable into a C57BL/6 mouse. We cultured this subcutaneous tumor, and sub-cloned it. The mRNA expression in the most aggressive YTN16 subline was compared to the less aggressive YTN2 subline by microarray analysis, and FGFR4 in YTN16 cells was knocked-out with a CRISPR/Cas9 system and inhibited by an FGFR4 selective inhibitor, BLU9931...
March 13, 2018: Cancer Science
Abulajiang Abudureheman, Julaiti Ainiwaer, Zhichao Hou, Madiniyat Niyaz, Abdugheni Turghun, Ayshamgul Hasim, Haiping Zhang, Xiaomei Lu, Ilyar Sheyhidin
BACKGROUND: MLL2 has been identified as one of the most frequently mutated genes in a variety of cancers including esophageal squamous cell carcinoma (ESCC). However, its clinical significance and prognostic value in ESCC has not been elucidated. In the present study, we aimed to investigate the expression and role of MLL2 in ESCC. METHODS: Immunohistochemistry (IHC) and qRT-PCR were used to examine the expression profile of MLL2. Kaplan-Meier survival analysis and univariate and multivariate Cox analyses were used to investigate the clinical and prognostic significance of MLL2 expression in Kazakh ESCC patients...
March 12, 2018: Journal of Cancer Research and Clinical Oncology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"