Read by QxMD icon Read

Biomedical chemistry

Colton M Miller, Yongmei Xu, Katrina M Kudrna, Blake E Hass, Brianna M Kellar, Andrew W Egger, Jian Liu, Edward N Harris
INTRODUCTION: Heparins are common blood anticoagulants that are critical for many surgical and biomedical procedures used in modern medicine. In contrast to natural heparin derived from porcine gut mucosa, synthetic heparins are homogenous by mass, polymer length, and chemistry. MATERIALS & METHODS: Stable cell lines expressing the human and mouse Stabilin receptors were used to evaluate endocytosis of natural and synthetic heparin. We chemoenzymatically produced synthetic heparin consisting of 12 sugars (dodecamers) containing 14 sulfate groups resulting in a non-3-O sulfated structure (n12mer)...
May 17, 2018: Thrombosis Research
Irina Postnova, Vladimir Silant'ev, Sergei Sarin, Yury Shchipunov
The account presents survey of our systematic studies on chitosan. Only this polysaccharide bears cationic charges, possesses antimicrobial activity and wound healing ability that make it highly appropriate for using in medicine, biomedical engineering, cosmetics, food, packaging. However, its application meets with severe limitation. Chitosan belongs to polysaccharides that do not jellify solutions. Main approaches are based on the chemical modifications and cross-linking, but these treatments impairs therewith the biocompatibility and biological activity of chitosan...
May 23, 2018: Chemical Record: An Official Publication of the Chemical Society of Japan ... [et Al.]
David C Hay, Cliona O'Farrelly
Human pluripotent stem cells (PSCs) offer a scalable alternative to primary and transformed human tissue. PSCs include human embryonic stem cells, derived from the inner cell mass of blastocysts unsuitable for human implantation; and induced PSCs, generated by the reprogramming of somatic cells. Both cell types display the ability to self-renew and retain pluripotency, promising an unlimited supply of human somatic cells for biomedical application. A distinct advantage of using PSCs is the ability to select for genetic background, promising personalized modelling of human biology 'in a dish' or immune-matched cell-based therapies for the clinic...
July 5, 2018: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
Qi An, Tao Huang, Feng Shi
Covalent layer-by-layer (LbL) assembly is a powerful method used to construct functional ultrathin films that enables nanoscopic structural precision, componential diversity, and flexible design. Compared with conventional LbL films built using multiple noncovalent interactions, LbL films prepared using covalent crosslinking offer the following distinctive characteristics: (i) enhanced film endurance or rigidity; (ii) improved componential diversity when uncharged species or small molecules are stably built into the films by forming covalent bonds; and (iii) increased structural diversity when covalent crosslinking is employed in componential, spacial, or temporal (labile bonds) selective manners...
May 16, 2018: Chemical Society Reviews
Derin Sevenler, George G Daaboul, Fulya Ekiz Kanik, Nese Lortlar Ünlü, M Selim Ünlu
DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and limited dynamic range of traditional fluorescence microarrays compared to other detection techniques have been the technology's Achilles' Heel, and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ('digital') regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages...
May 14, 2018: ACS Nano
Ruiqiang Hang, Yanlian Liu, Long Bai, Xiangyu Zhang, Xiaobo Huang, Husheng Jia, Bin Tang
In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni2+ release...
August 1, 2018: Materials Science & Engineering. C, Materials for Biological Applications
Nagarajan Subbiah, Muthusamy K, Lalitha Krishnamoorthy, Siva Prasad Yadavali, Thamizhanban Ayyapillai, Sridharan Vellaisamy, Maheswari C Uma
Bio-based polyesters are well-known biodegradable materials that are frequently used in our daily life, which include food industries and biomedical fields. The journey towards the development of sustainable polymer materials and technology postulate the replacement of traditionally using petrochemical-based monomers, transition metal catalyst, and more intensive purification techniques, which do not agree with the green chemistry principles. This contribution investigates the synthesis of bio-based hydrophilic and hydrophobic oligoesters, which in turn derived from easily accessible monomers of natural resources...
May 11, 2018: ChemSusChem
Qianli Huang, Xuezhong Li, Tarek A Elkhooly, Shenghang Xu, Xujie Liu, Qingling Feng, Hong Wu, Yong Liu
It is known that good mechanical properties, low modulus to reduce stress-shielding effect, favorable osteogenic activity and limited inflammatory response are critical factors for orthopedic implants to induce excellent osteointegration. In this study, Ti-20% Ta metal-metal composite (referred as Ti-Ta) which consisted of Ti- and Ta-rich phases was fabricated via the strategy of powder metallurgy. Micro-arc oxidation (MAO) was employed to modify the surface of Ti-Ta composite. The surfaces of Ti-Ta composite after MAO treatment at an applied voltage of 250 (referred as MAO-250 V) or 300 V (referred as MAO-300 V) exhibited three distinct zones with significantly different morphological features and surface chemistry...
May 5, 2018: Colloids and Surfaces. B, Biointerfaces
Francesco Boschetto, Tetsuya Adachi, Satoshi Horiguchi, Danny Fainozzi, Fulvio Parmigiani, Elia Marin, Wenliang Zhu, Bryan McEntire, Toshiro Yamamoto, Narisato Kanamura, Osam Mazda, Eriko Ohgitani, Giuseppe Pezzotti
Staphylococcus epidermidis (S. epidermidis) is one of the leading nosocomial pathogens, particularly associated with periprosthetic infections of biomedical implants. Silicon nitride (Si3N4), a nonoxide biomaterial widely used in spinal implants, has shown bacteriostatic effects against both gram-positive and gram-negative bacteria; however, the physicochemical interactions between Si3N4 and bacteria yet remain conspicuously unexplored. In situ time-lapse Raman spectroscopic experiments were conducted by exposing S...
May 2018: Journal of Biomedical Optics
Guangxue Feng, Bin Liu
Theranostic nanolights refer to luminescent nanoparticles possessing both imaging and therapeutic functions. Their shape, size, surface functions, and optical properties can be precisely manipulated through integrated efforts of chemistry, materials, and nanotechnology for customized applications. When localized photons are used to activate both imaging and therapeutic functions such as photodynamic or photothermal therapy, these theranostic nanolights increase treatment efficacy with minimized damage to surrounding healthy tissues, which represents a promising noninvasive nanomedicine as compared to conventional theranostic approaches...
May 7, 2018: Accounts of Chemical Research
Seyedeh Zahra Yousefi, Pardis-Sadat Tabatabaei-Panah, Javad Seyfi
Improving the bioinertness of materials is of great importance for developing biomedical devices that contact human tissues. The main goal of this study was to establish correlations among surface morphology, roughness and chemistry with hydrophobicity and cell adhesion in polydimethylsiloxane (PDMS) nanocomposites loaded with titanium dioxide (TiO2 ) nanoparticles. Firstly, wettability results showed that the nanocomposite loaded with 30 wt.% of TiO2 exhibited a superhydrophobic behavior; however, the morphology and roughness analysis proved that there was no discernible difference between the surface structures of samples loaded with 20 and 30 wt...
April 26, 2018: Colloids and Surfaces. B, Biointerfaces
Shuqing He, Jun Song, Junle Qu, Zhen Cheng
The development of fluorophores and molecular probes for the second near-infrared biological window (NIR-II, 1000-1700 nm) represents an important, newly emerging and dynamic field in molecular imaging, chemical biology and materials chemistry. Because of reduced scattering, minimal absorption and negligible autofluorescence, NIR-II imaging provides high resolution, a high signal-to-noise ratio, and deep tissue penetration capability. Among various state-of-the-art bioimaging modalities, one of the greatest challenges in developing novel probes is to achieve both high resolution and sensitivity...
May 4, 2018: Chemical Society Reviews
Kaushik Kuche, Rahul Maheshwari, Vishakha Tambe, Kit-Kay Mak, Hardi Jogi, Nidhi Raval, Mallikarjuna Rao Pichika, Rakesh Kumar Tekade
The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs...
May 3, 2018: Nanoscale
Tianxin Miao, Junqing Wang, Yun Zeng, Gang Liu, Xiaoyuan Chen
Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section...
April 2018: Advanced Science (Weinheim, Baden-Wurttemberg, Germany)
Gülistan Koçer, Pascal Jonkheijm
Properly functioning cell-instructive biointerfaces are critical for healthy integration of biomedical devices in the body and serve as decisive tools for the advancement of our understanding of fundamental cell biological phenomena. Studies are reviewed that use covalent chemistries to fabricate cell-instructive biointerfaces. These types of biointerfaces typically result in a static presentation of predefined cell-instructive cues. Chemically defined, but dynamic cell-instructive biointerfaces introduce spatiotemporal control over cell-instructive cues and present another type of biointerface, which promises a more biomimetic way to guide cell behavior...
May 2, 2018: Advanced Healthcare Materials
Arijit Basu, Abraham J Domb
This review focusses on recent developments of polyanhydrides, a class of degradable synthetic biopolymers. Polyanhydrides have been used as carriers for controlled delivery of drugs. A polyanhydride copolymer of carboxyphenoxy propane and sebacic acid has been used in Gliadel brain tumor implants for the controlled delivery of carmustine or bis-chloroethylnitrosourea. They are easy and inexpensive to synthesize (especially scale up). However, polyanhydrides possess a short shelf-life. Hydrolytic cleavage and anhydride interchanges lower their molecular weights during storage...
April 30, 2018: Advanced Materials
Bing Yu, Hailin Cong, Qiaohong Peng, Chuantao Gu, Qi Tang, Xiaodan Xu, Chao Tian, Feng Zhai
Nonspherical polymer particles (NPPs) are nano/micro-particulates of macromolecules that are anisotropic in shape, and can be designed anisotropic in chemistry. Due to shape and surface anisotropies, NPPs bear many unique structures and fascinating properties which are distinctly different from those of spherical polymer particles (SPPs). In recent years, the research on NPPs has surprisingly blossomed in recent years, and many practical materials based on NPPs with potential applications in photonic device, material science and biomedical engineering have been generated...
April 20, 2018: Advances in Colloid and Interface Science
Laura Trapiella-Alfonso, Thomas Pons, Nicolas Lequeux, Ludovic Leleu, Juliette Grimaldi, Mariana Tasso, Edward Oujagir, Johanne Seguin, Fanny d'Orlyé, Christian Girard, Bich-Thuy Doan, Anne Varenne
In the last decades, fluorescent quantum dots have appeared as high-performance biological fluorescent nanoprobes and have been explored for a variety of biomedical optical imaging applications. However many central challenges still exist concerning the control of the surface chemistry in order to ensure high biocompatibility, low toxicity, anti-fouling and specific active targeting properties. Regarding in vivo applications, circulation time and clearance of the nanoprobe are also key parameters to control for the design and characterization of new optical imaging agents...
April 27, 2018: ACS Applied Materials & Interfaces
Atanu Chakraborty, Chumki Dalal, Nikhil R Jana
Chemically and biochemically functionalized colloidal nanoparticle with appropriate surface chemistry are essential for various biomedical application. Although a variety of approaches are now available in making such functional nanoparticle and nanobioconjugate, the lack of complementary surface chemistry often leads to poor performance toward intended biomedical applications. This feature article will focus on our effort in making colloidal nanobioconjugates with appropriate/complementary surface chemistry for better performance of designed nanoprobe towards cellular and subcellular targeting applications...
April 26, 2018: Langmuir: the ACS Journal of Surfaces and Colloids
Shu-Wei Wu, Xifeng Liu, A Lee Miller, Yu-Shiuan Cheng, Ming-Long Yeh, Lichun Lu
In the present study, we fabricated non-toxic, injectable, and thermo-sensitive NIPAAm-g-chitosan (NC) hydrogels with thiol modification for introduction of disulfide cross-linking strategy. Previously, NIPAAm and chitosan copolymer has been proven to have excellent biocompatibility, biodegradability and rapid phase transition after injection, suitable to serve as cell carriers or implanted scaffolds. However, weak mechanical properties significantly limit their potential for biomedical fields. In order to overcome this issue, we incorporated thiol side chains into chitosan by covalently conjugating N-acetyl-cysteine (NAC) with carbodiimide chemistry to strengthen mechanical properties...
July 15, 2018: Carbohydrate Polymers
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"