keyword
MENU ▼
Read by QxMD icon Read
search

Piezo1

keyword
https://www.readbyqxmd.com/read/29065102/the-function-of-the-novel-mechanical-activated-ion-channel-piezo1-in-the-human-osteosarcoma-cells
#1
Long Jiang, Yi-Ding Zhao, Wei-Xiang Chen
BACKGROUND The Piezo1 protein ion channel is a novel mechanical activated ion channel which is related to mechanical signal transduction. However, the function of the mechanically activated ion channel Piezo1 had not been explored. In this study, we explored the function of the Piezo1 ion channel in human osteosarcoma (OS) cells related to apoptosis, invasion, and the cell proliferation. MATERIAL AND METHODS Reverse transcription polymerase chain reaction (RT-PCR) and western-blotting were used to detect the expression of the Piezo1 protein...
October 24, 2017: Medical Science Monitor: International Medical Journal of Experimental and Clinical Research
https://www.readbyqxmd.com/read/29057326/accelerating-metabolism-and-transmembrane-cation-flux-by-distorting-red-blood-cells
#2
Philip W Kuchel, Dmitry Shishmarev
Under static conditions, mammalian red blood cells (RBCs) require a continuous supply of energy, typically via glucose, to maintain their biconcave disc shape. Mechanical distortion, in a complementary way, should lead to increased energy demand that is manifest in accelerated glycolysis. The experimental challenge in observing this phenomenon was met by reversibly and reproducibly distorting the cells and noninvasively measuring glycolytic flux. This was done with a gel-distorting device that was coupled with (13)C nuclear magnetic resonance (NMR) spectroscopy...
October 2017: Science Advances
https://www.readbyqxmd.com/read/29051181/disorders-of-erythrocyte-hydration
#3
Patrick G Gallagher
The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity...
October 19, 2017: Blood
https://www.readbyqxmd.com/read/29044106/a-mechanosensitive-ca-2-channel-activity-is-dependent-on-the-developmental-regulator-dek1
#4
Daniel Tran, Roberta Galletti, Enrique D Neumann, Annick Dubois, Reza Sharif-Naeini, Anja Geitmann, Jean-Marie Frachisse, Olivier Hamant, Gwyneth C Ingram
Responses of cells to mechanical stress are thought to be critical in coordinating growth and development. Consistent with this idea, mechanically activated channels play important roles in animal development. For example, the PIEZO1 channel controls cell division and epithelial-layer integrity and is necessary for vascular development in mammals. In plants, the actual contribution of mechanoperception to development remains questionable because very few putative mechanosensors have been identified and the phenotypes of the corresponding mutants are rather mild...
October 18, 2017: Nature Communications
https://www.readbyqxmd.com/read/28905417/investigating-the-structural-dynamics-of-the-piezo1-channel-activation-and-inactivation-by-coarse-grained-modeling
#5
Wenjun Zheng, Frederick Sachs
The PIEZO channels, a family of mechanosensitive channels in vertebrates, feature a fast activation by mechanical stimuli (eg, membrane tension) followed by a slower inactivation. Although a medium-resolution structure of the trimeric form of PIEZO1 was solved by cryo-electron microscopy (cryo-EM), key structural changes responsible for the channel activation and inactivation are still unknown. Toward decrypting the structural mechanism of the PIEZO1 activation and inactivation, we performed systematic coarse-grained modeling using an elastic network model and related modeling/analysis tools (ie, normal mode analysis, flexibility and hotspot analysis, correlation analysis, and cryo-EM-based hybrid modeling and flexible fitting)...
September 14, 2017: Proteins
https://www.readbyqxmd.com/read/28881406/the-circadian-expression-of-piezo1-trpv4-connexin26-and-vnut-associated-with-the-expression-levels-of-the-clock-genes-in-mouse-primary-cultured-urothelial-cells
#6
Tatsuya Ihara, Takahiko Mitsui, Yuki Nakamura, Mie Kanda, Sachiko Tsuchiya, Satoru Kira, Hiroshi Nakagomi, Norifumi Sawada, Yuri Hirayama, Keisuke Shibata, Eiji Shigetomi, Yoichi Shinozaki, Mitsuharu Yoshiyama, Atsuhito Nakao, Masayuki Takeda, Schuichi Koizumi
AIMS: To investigate circadian gene expressions in the mouse bladder urothelium to establish an experimental model and study the functions of the circadian rhythm. METHODS: The gene expression rhythms of the clock genes, mechano-sensors such as Piezo1 and TRPV4, ATP release mediated molecules (ARMM) such as Cx26 and VNUT were investigated in mouse primary cultured urothelial cells (UCs) of wild-type (WT) and Clock mutant (Clock(Δ19)(/Δ)(19) ) mice using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and western blotting analysis...
September 7, 2017: Neurourology and Urodynamics
https://www.readbyqxmd.com/read/28839146/piezo1-channels-sense-whole-body-physical-activity-to-reset-cardiovascular-homeostasis-and-enhance-performance
#7
Baptiste Rode, Jian Shi, Naima Endesh, Mark J Drinkhill, Peter J Webster, Sabine J Lotteau, Marc A Bailey, Nadira Y Yuldasheva, Melanie J Ludlow, Richard M Cubbon, Jing Li, T Simon Futers, Lara Morley, Hannah J Gaunt, Katarzyna Marszalek, Hema Viswambharan, Kevin Cuthbertson, Paul D Baxter, Richard Foster, Piruthivi Sukumar, Andrew Weightman, Sarah C Calaghan, Stephen B Wheatcroft, Mark T Kearney, David J Beech
Mammalian biology adapts to physical activity but the molecular mechanisms sensing the activity remain enigmatic. Recent studies have revealed how Piezo1 protein senses mechanical force to enable vascular development. Here, we address Piezo1 in adult endothelium, the major control site in physical activity. Mice without endothelial Piezo1 lack obvious phenotype but close inspection reveals a specific effect on endothelium-dependent relaxation in mesenteric resistance artery. Strikingly, the Piezo1 is required for elevated blood pressure during whole body physical activity but not blood pressure during inactivity...
August 24, 2017: Nature Communications
https://www.readbyqxmd.com/read/28749478/molecular-autopsy-in-maternal-fetal-medicine
#8
Hanan E Shamseldin, Wesam Kurdi, Fatima Almusafri, Maha Alnemer, Alya Alkaff, Zeneb Babay, Amal Alhashem, Maha Tulbah, Nada Alsahan, Rubina Khan, Bahauddin Sallout, Elham Al Mardawi, Mohamed Zain Seidahmed, Niema Meriki, Yasser Alsaber, Alya Qari, Ola Khalifa, Wafaa Eyaid, Zuhair Rahbeeni, Ahmed Kurdi, Mais Hashem, Tarfa Alshidi, Eman Al-Obeid, Firdous Abdulwahab, Niema Ibrahim, Nour Ewida, Karen El-Akouri, Mariam Al Mulla, Tawfeg Ben-Omran, Matthias Pergande, Sebahattin Cirak, Saeed Al Tala, Ranad Shaheen, Eissa Faqeih, Fowzan S Alkuraya
PurposeThe application of genomic sequencing to investigate unexplained death during early human development, a form of lethality likely enriched for severe Mendelian disorders, has been limited.MethodsIn this study, we employed exome sequencing as a molecular autopsy tool in a cohort of 44 families with at least one death or lethal fetal malformation at any stage of in utero development. Where no DNA was available from the fetus, we performed molecular autopsy by proxy, i.e., through parental testing.ResultsPathogenic or likely pathogenic variants were identified in 22 families (50%), and variants of unknown significance were identified in further 15 families (34%)...
July 27, 2017: Genetics in Medicine: Official Journal of the American College of Medical Genetics
https://www.readbyqxmd.com/read/28731145/piezo1-protein-induces-the-apoptosis-of-human-osteoarthritis-derived-chondrocytes-by-activating-caspase-12-the-signaling-marker-of-er-stress
#9
Xiao-Fei Li, Zhao Zhang, Zhu-Ke Chen, Zhao-Wei Cui, Hai-Ning Zhang
The present study was carried out to determine whether the mechanically activated cation channel Piezo1 protein plays a role as a signaling pathway which causes the apoptosis of human chondrocytes. The chondrocytes were isolated, cultured, and then subjected to mechanical stretch force for 0, 2, 12, 24 and 48 h, respectively. The expression levels of Piezo1 and the apoptosis-related protein caspase-12 were assessed by reverse transcription-quantitative polymerase chain reaction, as well as the apoptosis-related genes, B cell lymphoma/leukemia-2 (Bcl-2), Bcl-associated X protein (Bax) and Bcl-2-associated death promoter (BAD)...
September 2017: International Journal of Molecular Medicine
https://www.readbyqxmd.com/read/28728825/genetic-diseases-of-piezo1-and-piezo2-dysfunction
#10
S L Alper
Mutations in the genes encoding the mechanosensitive cation channels PIEZO1 and PIEZO2 are responsible for multiple hereditary human diseases. Loss-of-function mutations in the human PIEZO1 gene cause autosomal recessive congenital lymphatic dysplasia. Gain-of-function mutations in the human PIEZO1 gene cause the autosomal dominant hemolytic anemia, hereditary xerocytosis (also known as dehydrated stomatocytosis). Loss-of-function mutations in the human PIEZO2 gene cause an autosomal recessive syndrome of muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728823/piezo1-channels-in-vascular-development-and-the-sensing-of-shear-stress
#11
A J Hyman, S Tumova, D J Beech
A critical point in mammalian development occurs before mid-embryogenesis when the heart starts to beat, pushing blood into the nascent endothelial lattice. This pushing force is a signal, detected by endothelial cells as a frictional force (shear stress) to trigger cellular changes that underlie the essential processes of vascular remodeling and expansion required for embryonic growth. The processes are complex and multifactorial and Piezo1 became a recognized player only 2years ago, 4years after Piezo1's initial discovery as a functional membrane protein...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728822/a-microfluidic-approach-for-studying-piezo-channels
#12
M M Maneshi, P A Gottlieb, S Z Hua
Microfluidics is an interdisciplinary field intersecting many areas in engineering. Utilizing a combination of physics, chemistry, biology, and biotechnology, along with practical applications for designing devices that use low volumes of fluids to achieve high-throughput screening, is a major goal in microfluidics. Microfluidic approaches allow the study of cells growth and differentiation using a variety of conditions including control of fluid flow that generates shear stress. Recently, Piezo1 channels were shown to respond to fluid shear stress and are crucial for vascular development...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728821/the-kinetics-and-the-permeation-properties-of-piezo-channels
#13
R Gnanasambandam, P A Gottlieb, F Sachs
Piezo channels are eukaryotic, cation-selective mechanosensitive channels (MSCs), which show rapid activation and voltage-dependent inactivation. The kinetics of these channels are largely consistent across multiple cell types and different stimulation paradigms with some minor variability. No accessory subunits that associate with Piezo channels have been reported. They are homotrimers and each ∼300kD monomer has an N-terminal propeller blade-like mechanosensing module, which can confer mechanosensing capabilities on ASIC-1 (the trimeric non-MSC, acid-sensing ion channel-1) and a C-terminal pore module, which influences conductance, selectivity, and channel inactivation...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728820/role-of-piezo-channels-in-joint-health-and-injury
#14
W Lee, F Guilak, W Liedtke
Cartilage is an intrinsically mechanically sensitive tissue composed of chondrocytes as the only cell type. Chondrocyte mechanotransduction is not well understood, but recently we identified critical components of the mechanotransduction machinery demonstrating how mechanical stimulation of these cells can be converted into cellular calcium signals. Physiologic mechanical cues induce anabolic responses of (post-mitotic) chondrocytes via transient receptor potential vanilloid 4 ion channels, whereas injurious mechanical stress is transduced by Piezo1 jointly with Piezo2 ion channels...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728819/regulation-of-piezo-channels-by-cellular-signaling-pathways
#15
I Borbiro, T Rohacs
The recently identified mechanically activated Piezo1 and Piezo2 channels play major roles in various aspects of mechanosensation in mammals, and their mutations are associated with human diseases. Recent reports show that activation of cell surface receptors coupled to heterotrimeric Gq proteins increase the sensitivity of Piezo2 channels to mechanical stimuli. Activation of the cyclic adenosine monophosphate pathway was also shown to potentiate Piezo2 channel activity. This phenomenon may play a role in mechanical allodynia or hyperalgesia during inflammation...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728818/mechanosensitive-piezo-channels-in-the-gastrointestinal-tract
#16
C Alcaino, G Farrugia, A Beyder
Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728817/piezo2-in-cutaneous-and-proprioceptive-mechanotransduction-in-vertebrates
#17
E O Anderson, E R Schneider, S N Bagriantsev
Mechanosensitivity is a fundamental physiological capacity, which pertains to all life forms. Progress has been made with regard to understanding mechanosensitivity in bacteria, flies, and worms. In vertebrates, however, the molecular identity of mechanotransducers in somatic and neuronal cells has only started to appear. The Piezo family of mechanogated ion channels marks a pivotal milestone in understanding mechanosensitivity. Piezo1 and Piezo2 have now been shown to participate in a number of processes, ranging from arterial modeling to sensing muscle stretch...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728816/in-touch-with-the-mechanosensitive-piezo-channels-structure-ion-permeation-and-mechanotransduction
#18
J Geng, Q Zhao, T Zhang, B Xiao
Mechanotransduction, the conversion of mechanical forces into biological signals, plays critical roles in various physiological and pathophysiological processes in mammals, such as conscious sensing of touch, pain, and sound, as well as unconscious sensing of blood flow-associated shear stress, urine flow, and bladder distention. Among the various molecules involved in mechanotransduction, mechanosensitive (MS) cation channels have long been postulated to represent one critical class of mechanotransducers that directly and rapidly converts mechanical force into electrochemical signals...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728815/the-structural-basis-for-sensing-by%C3%A2-the-piezo1-protein
#19
W Li, N Gao, M Yang
Mechanotransduction is one of the processes by which cells sense and convert mechanical stimuli into biological signals. Experimental data from various species have revealed crucial roles for mechanotransduction in organ development and a plethora of physiological activities. Piezo proteins have recently been identified as the long-sought-after mechanically activated cation channels in eukaryotes. The architecture of mouse Piezo1 (mPiezo1) channel determined by cryoelectron microscopic single-particle analysis at medium resolution yielded important insights into the mechanical force sensing mechanism...
2017: Current Topics in Membranes
https://www.readbyqxmd.com/read/28728814/a-tour-de-force-the-discovery-properties-and-function-of-piezo-channels
#20
P A Gottlieb
Mechanical transducers appear throughout cell biology and are used to convert mechanical stress into chemical or electrical signals that allow the cell to respond to environmental changes. In the past six years, a eukaryotic mechanical channel family with two members, Piezo1 and Piezo2, has been identified. Piezo1 was shown to be a cation-selective channel that does not require ancillary proteins for activity. Mouse Piezo1 is large, with over 2500 amino acids, and is not homologous to other ion channels. Both piezo channels have rapid voltage-dependent inactivation with a reversal potential near 0mV...
2017: Current Topics in Membranes
keyword
keyword
35025
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"