Read by QxMD icon Read

Brain Plasticity

Ming Xiao, Daozhi Shen, Kevin P Musselman, Walter W Duley, Y Norman Zhou
Neuromorphic computational systems that emulate biological synapses in the human brain are fundamental in the development of artificial intelligence protocols beyond the standard von Neumann architecture. Such systems require new types of building blocks, such as memristors that access a quasi-continuous and wide range of conductive states, which is still an obstacle for the realization of high-efficiency and large-capacity learning in neuromorphoric simulation. Here, we introduce hydrogen and sodium titanate nanobelts, the intermediate products of hydrothermal synthesis of TiO2 nanobelts, to emulate the synaptic behavior...
March 16, 2018: Nanoscale
Inbal Maidan, Freek Nieuwhof, Hagar Bernad-Elazari, Bastiaan R Bloem, Nir Giladi, Jeffrey M Hausdorff, Jurgen A H R Claassen, Anat Mirelman
BACKGROUND: In a randomized control trial conducted in patients with Parkinson's disease, a treadmill training program combined with virtual reality that targeted motor and cognitive aspects of safe ambulation led to fewer falls, compared with treadmill training alone. OBJECTIVE: To investigate if the 2 types of training differentially affected prefrontal activation and if this might explain differences in fall rates after the intervention. METHODS: Sixty-four patients with Parkinson's disease were randomized into the treadmill training arm (n = 34, mean age 73...
March 1, 2018: Neurorehabilitation and Neural Repair
Jean-Nicolas Audet, Lima Kayello, Simon Ducatez, Sara Perillo, Laure Cauchard, Jason T Howard, Lauren A O'Connell, Erich D Jarvis, Louis Lefebvre
Problem solving and innovation are key components of intelligence. We compare wild-caught individuals from two species that are close relatives of Darwin's finches, the innovative Loxigilla barbadensis , and its most closely related species in Barbados, the conservative Tiaris bicolor . We found an all-or-none difference in the problem-solving capacity of the two species. Brain RNA sequencing analyses revealed interspecific differences in genes related to neuronal and synaptic plasticity in the intrapallial neural populations (mesopallium and nidopallium), especially in the nidopallium caudolaterale, a structure functionally analogous to the mammalian prefrontal cortex...
March 2018: Science Advances
Yuan-Hao Chen, Tung-Tai Kuo, Eagle Yi-Kung Huang, Barry J Hoffer, Yu-Ching Chou, Yung-Hsiao Chiang, Hsin-I Ma, Jonathan P Miller
Aim: To determine the precise effects of post-traumatic seizure activity on hippocampal processes, we induced seizures at various intervals after traumatic brain injury (TBI) and analyzed plasticity at CA1 Schaffer collateral synapses. Material and Methods: Rats were initially separated into two groups; one exposed solely to fluid percussion injury (FPI) at 2 Psi and the other only receiving kainic acid (KA)-induced seizures without FPI. Electrophysiological (ePhys) studies including paired-pulse stimulation for short-term presynaptic plasticity and long-term potentiation (LTP) of CA1 Schaffer collateral synapses of the hippocampus for post-synaptic function survey were followed at post-event 1 hour, 3 and 7 days respectively...
February 20, 2018: Oncotarget
Marc P Forrest, Euan Parnell, Peter Penzes
The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity...
March 16, 2018: Nature Reviews. Neuroscience
Luba Sominsky, Christine L Jasoni, Hannah Twigg, Sarah J Spencer
The hypothalamus is a key centre for regulation of vital physiological functions, such as appetite, stress responsiveness and reproduction. Development of the different hypothalamic nuclei and its major neuronal populations begins prenatally in both altricial and precocial species, with the fine tuning of neuronal connectivity and attainment of adult function established postnatally, and maintained throughout adult life. The perinatal period is highly susceptible to environmental insults that, by disrupting critical developmental processes, can set the tone for the establishment of adult functionality...
March 15, 2018: Journal of Endocrinology
Joseph E Pick, Edward B Ziff
A fundamental property of the brain is its ability to modify its function in response to its own activity. This ability for self-modification depends to a large extent on synaptic plasticity. It is now appreciated that for excitatory synapses, a significant part of synaptic plasticity depends upon changes in the post synaptic response to glutamate released from nerve terminals. Modification of the post synaptic response depends, in turn, on changes in the abundances of AMPA receptors in the post synaptic membrane...
March 12, 2018: Molecular and Cellular Neurosciences
Melissa L Kirkwood, Gary M Arbique, Jeffrey B Guild, Katie Zeng, Yin Xi, John Rectenwald, Jon A Anderson, Carlos Timaran
OBJECTIVE: Radiation to the interventionalist's brain during fluoroscopically guided interventions (FGIs) may increase the incidence of cerebral neoplasms. Lead equivalent surgical caps claim to reduce radiation brain doses by 50% to 95%. We sought to determine the efficacy of the RADPAD (Worldwide Innovations & Technologies, Lenexa, Kan) No Brainer surgical cap (0.06 mm lead equivalent at 90 kVp) in reducing radiation dose to the surgeon's and trainee's head during FGIs and to a phantom to determine relative brain dose reductions...
March 12, 2018: Journal of Vascular Surgery
Oscar Arias-Carrion, Emmanuel Ortega-Robles, Benito de Celis-Alonso, Artur Palasz, Eric Murillo-Rodriguez, Miguel A Mendez-Rojas, Jose Salas-Pacheco, Elias Manjarrez
Adult neurogenesis, a specific form of brain plasticity in mammals occurring in the subventricular zone, is subject to complex regulations. Hypocretin/orexin neurons are implicated in the regulation of sleep and arousal states among other functions. Here, we found orexin afferent projections in the rat subventricular zone, which is a neurogenic region. We therefore studied in detail the origin of the orexinergic innervation to the subventricular zone in rats. Post-mortem retrograde tracing combined with immunofluorescence procedures indicate orexinergic projections toward the subventricular zone...
March 13, 2018: CNS & Neurological Disorders Drug Targets
Augusta Pisanu, Laura Boi, Giovanna Mulas, Saturnino Spiga, Sandro Fenu, Anna R Carta
Neuroinflammation is a main component of Parkinson's disease (PD) neuropathology, where unremitting reactive microglia and microglia-secreted soluble molecules such as cytokines, contribute to the neurodegenerative process as part of an aberrant immune reaction. Besides, pro-inflammatory cytokines, predominantly TNF-α, play an important neuromodulatory role in the healthy and diseased brain, being involved in neurotransmitter metabolism, synaptic scaling and brain plasticity. Recent preclinical studies have evidenced an exacerbated neuroinflammatory reaction in the striatum of parkinsonian rats that developed dyskinetic responses following L-DOPA administration...
March 14, 2018: Journal of Neural Transmission
Tao Tan, Wei Wang, Haitao Xu, Zhilin Huang, Yu Tian Wang, Zhifang Dong
Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown...
2018: Frontiers in Cellular Neuroscience
Per F Nordmark, Christina Ljungberg, Roland S Johansson
Transection of the median nerve typically causes lifelong restriction of fine sensory and motor skills of the affected hand despite the best available surgical treatment. Inspired by recent findings on activity-dependent structural plasticity of the adult brain, we used voxel-based morphometry to analyze the brains of 16 right-handed adults who more than two years earlier had suffered injury to the left or right median nerve followed by microsurgical repair. Healthy individuals served as matched controls. Irrespective of side of injury, we observed gray matter reductions in left ventral and right dorsal premotor cortex, and white matter reductions in commissural pathways interconnecting those motor areas...
March 14, 2018: Scientific Reports
Elizabeth G Pitts, Dan C Li, Shannon L Gourley
Specific corticostriatal structures and circuits are important for flexibly shifting between goal-oriented versus habitual behaviors. For example, the orbitofrontal cortex and dorsomedial striatum are critical for goal-directed action, while the dorsolateral striatum supports habits. To determine the role of neurotrophin signaling, we overexpressed a truncated, inactive form of tropomyosin receptor kinase B [also called tyrosine receptor kinase B (TrkB)], the high-affinity receptor for Brain-derived Neurotrophic Factor, in the orbitofrontal cortex, dorsomedial striatum and dorsolateral striatum...
March 14, 2018: Scientific Reports
Jacque P K Ip, Ikue Nagakura, Jeremy Petravicz, Keji Li, Erik A C Wiemer, Mriganka Sur
Microdeletion of a region in chromosome 16p11.2 increases susceptibility to autism. Although this region contains exons of 29 genes, disrupting only a small segment of the region, which spans 5 genes, is sufficient to cause autistic traits. One candidate gene in this critical segment is MVP , which encodes for the major vault protein (MVP) that has been implicated in regulation of cellular transport mechanisms. MVP expression levels in MVP +/- mice closely phenocopy those of 16p11.2 mutant mice, suggesting that MVP +/- mice may serve as a model of MVP function in 16p11...
March 14, 2018: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Mary E Orczykowski, Kevin R Arndt, Lauren E Palitz, Brian C Kramer, Monica A Pessina, Adrian L Oblak, Seth P Finklestein, Farzad Mortazavi, Douglas L Rosene, Tara L Moore
Stroke results in enduring damage to the brain which is accompanied by innate neurorestorative processes, such as reorganization of surviving circuits. Nevertheless, patients are often left with permanent residual impairments. Cell based therapy is an emerging therapeutic that may function to enhance the innate neurorestorative capacity of the brain. We previously evaluated human umbilical tissue-derived cells (hUTC) in our non-human primate model of cortical injury limited to the hand area of primary motor cortex...
March 11, 2018: Experimental Neurology
Sophie H Bennett, Alastair J Kirby, Gerald T Finnerty
Neuronal connections form the physical basis for communication in the brain. Recently, there has been much interest in mapping the "connectome" to understand how brain structure gives rise to brain function, and ultimately, to behaviour. These attempts to map the connectome have largely assumed that connections are stable once formed. Recent studies, however, indicate that connections in mammalian brains may undergo rewiring during learning and experience-dependent plasticity. This suggests that the connectome is more dynamic than previously thought...
March 11, 2018: Neuroscience and Biobehavioral Reviews
Juan R Martinez-Galan, Ana Verdejo, Elena Caminos
Disturbances in calcium homeostasis due to canonical transient receptor potential (TRPC) and/or store-operated calcium (SOC) channels can play a key role in a large number of brain disorders. TRPC channels are plasma membrane cation channels included in the transient receptor potential (TRP) superfamily. The most widely distributed member of the TRPC subfamily in the brain is TRPC1, which is frequently linked to group I metabotropic glutamate receptors (mGluRs) and to the components of SOC channels. Proposing TRPC/SOC channels as a therapeutic target in neurological diseases previously requires a detailed knowledge of the distribution of such molecules in the brain...
2018: Frontiers in Neuroanatomy
Marie E Gaine, Snehajyoti Chatterjee, Ted Abel
Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of epigenetic alterations on the regulation of gene expression, focusing on the most common epigenetic mechanisms: (i) DNA methylation; (ii) histone modifications; and (iii) non-coding RNAs...
2018: Frontiers in Neural Circuits
Mantas Mikaitis, Garibaldi Pineda García, James C Knight, Steve B Furber
SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity-believed to be one of the main mechanisms behind learning and memory in the brain...
2018: Frontiers in Neuroscience
Elizabeth Harford-Wright, Julie Gavard
Glioblastoma multiforme are mortifying brain tumors that contain a subpopulation of tumor cells with stem-like properties, termed as glioblastoma stem-like cells (GSCs). These GSCs constitute an autonomous reservoir of aberrant cells able to initiate, maintain, and repopulate the tumor mass. A new therapeutic strategy would consist of targeting the GSC population. The GSCs are situated in perivascular niches, closely associated with brain microvascular endothelial cells thereby involved in bidirectional molecular and cellular interactions...
2018: Journal of Experimental Neuroscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"