Read by QxMD icon Read

aluminum nanoparticles

Yong Seok Hwang, Valery I Levitas
The external surface of metallic particles is usually covered by a thin and strong oxide shell, which significantly affects superheating and melting of particles. The effects of geometric parameters and heating rate on characteristic melting and superheating temperatures and melting behavior of aluminum nanoparticles covered by an oxide shell were studied numerically. For this purpose, the multiphysics model that includes the phase field model for surface melting, a dynamic equation of motion, a mechanical model for stress and strain simulations, interface and surface stresses, and the thermal conduction model including thermoelastic and thermo-phase transformation coupling as well as transformation dissipation rate was formulated...
October 10, 2016: Physical Chemistry Chemical Physics: PCCP
Miriam Barquero-Quirós, María Julia Arcos-Martínez
A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine substrate was affected by the presence of Al(III) ions leading to a decrease in its amperometric current. The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon electrodes modifiedwith tetrathiofulvalene (TTF) and different types ofnanoparticles. Nanoparticles of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes by means of two electrochemical procedures...
2016: Sensors
Tingkai Zhao, Shengfei She, Xianglin Ji, Xinai Guo, Wenbo Jin, Ruoxing Zhu, Alei Dang, Hao Li, Tiehu Li, Bingqing Wei
The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process...
September 27, 2016: Scientific Reports
Zhen Liu, Zhongyuan Huang, Feifei Cheng, Zhanhu Guo, Guangdi Wang, Xu Chen, Zhe Wang
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal-air batteries. Herein, we report the novel system of nickel-aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone...
2016: Scientific Reports
Yousef Amini, Bagher Moradi, Mahdi Fasihi-Ramandi
Many materials such as aluminum hydroxide have been tried as adjuvants to compensate low inherent immunogenicity of subunit vaccines. The aim of this study was to evaluate the specific immune response following the administration of aluminum hydroxide nanoparticles with EsxV antigen. The physiochemical properties of the nanoparticle were characterized in vitro. After subcutaneous immunization, cytokine secretion patterns including IFN-gama,IL-4, and TGF-beta levels were measured by indirect enzyme linked immunosorbent assay (ELISA)...
September 20, 2016: Artificial Cells, Nanomedicine, and Biotechnology
Dong Hwan Shin, Jeffrey S Allen, Seong Hyuk Lee, Chang Kyoung Choi
Using a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.0005% yellow-green polystyrene fluorescent particles of 1 μm diameter. High-speed, fluorescent-mode confocal imaging enables investigation of depth-wise sectioned particle movements in the nanofluid droplet inside which a bubble is entrapped...
2016: Scientific Reports
Yael Gutierrez, Dolores Ortiz, Juan M Sanz, Jose M Saiz, Francisco Gonzalez, Henry O Everitt, Fernando Moreno
The ultraviolet (UV) range presents new challenges for plasmonics, with interesting applications ranging from engineering to biology. In previous research, gallium, aluminum, and magnesium were found to be very promising UV plasmonic metals. However, a native oxide shell surrounds nanostructures of these metals that affects their plasmonic response. Here, through a nanoparticle-oxide core-shell model, we present a detailed electromagnetic analysis of how oxidation alters the UV-plasmonic response of spherical or hemisphere-on-substrate nanostructures made of those metals by analyzing the spectral evolution of two parameters: the absorption efficiency (far-field analysis) and the enhancement of the local intensity averaged over the nanoparticle surface (near-field analysis)...
September 5, 2016: Optics Express
Thomas Lunkenbein, Frank Girgsdies, Timur Kandemir, Nygil Thomas, Malte Behrens, Robert Schlögl, Elias Frei
Long-term stability of catalysts is an important factor in the chemical industry. This factor is often underestimated in academic testing methods, which may lead to a time gap in the field of catalytic research. The deactivation behavior of an industrially relevant Cu/ZnO/Al2 O3 catalyst for the synthesis of methanol is reported over a period of 148 days time-on-stream (TOS). The process was investigated by a combination of quasi in situ and ex situ analysis techniques. The results show that ZnO is the most dynamic species in the catalyst, whereas only slight changes can be observed in the Cu nanoparticles...
October 4, 2016: Angewandte Chemie
Maria Castro, Mohamed Haouas, Ivy Lim, Hans J Bongard, Ferdi Schüth, Francis Taulelle, Gunnel Karlsson, Viveka Alfredsson, Eric Breyneart, Christine E A Kirschhock, Wolfgang Schmidt
The formation of silicate nanoaggregates (NAs) at the very early stages of precursor sols and zeolite beta crystallization from silicate nanoparticles (NPs) are investigated in detail using a combination of different analysis methods, including liquid-state (29) Si, (27) Al, (14) N, and (1) H NMR spectroscopy, mass spectrometry (MS), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and transmission electron microscopy at cryogenic temperatures (cryo-TEM). Prior to hydrothermal treatment, silicate NAs are observed if the Si/OH ratio in the reaction mixture is greater than 1...
October 17, 2016: Chemistry: a European Journal
N Cohen, A Dotan, H Dodiuk, S Kenig
Superhydrophobic (SH) coatings have been shown to reduce freezing and ice nucleation rates, by means of low surface energy chemistry tailored with nano/micro roughness. Durability enhancement of SH surfaces is a crucial issue. Consequently, the present research on reducing ice adhesion is based on radiation-induced radical reaction for covalently bonding SiO2 nanoparticles to polymer coatings to obtain durable roughness. Results indicated that the proposed approach resulted in SH surfaces having high contact angles (>155°) and low sliding angles (<5°) with improved durability and transparency...
September 20, 2016: Langmuir: the ACS Journal of Surfaces and Colloids
Li Lai, Qiang Xie, Wen-kan Fang, Ming-chao Xing, De-yi Wu
A novel magnetic core/shell structured nano-particle Fe₃O₄@ SiO₂phosphor-removal ahsorbent functionalized with hydrous aluminum oxides (Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O) was synthesized. Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O was characterized by XRD, TEM, VSM and BET nitrogen adsorption experiment. The XRD and TEM results demonstrated the presence of the core/shell structure, with saturated magnetization and specific surface area of 56.00 emu · g⁻¹ and 47.27 m² · g⁻¹, respectively. In batch phosphor adsorption experiment, the Langmuir adsorption maximum capacity was 12...
April 15, 2016: Huan Jing Ke Xue= Huanjing Kexue
Mengqi Li, Dongqing Li
Most researches on oil droplets immersed in aqueous solutions assume that the surface charges of oil droplets are, similar to that of solid particles, immobile and distributed uniformly under external electric field. However, the surface charges at the liquid-liquid interface are mobile and will redistribute under external electric field. This paper studies the redistribution of surface charges on an oil droplet under the influence of the external electrical field. Analytical expressions of the local zeta potential on the surface of an oil droplet after the charge redistribution in a uniform electrical field were derived...
October 2016: Advances in Colloid and Interface Science
Mohammed A Amin, Emad M Ahmed, Nasser Y Mostafa, Mona M Alotibi, Gitashree Darabdhara, Manash R Das, Joanna Wysocka, Jacek Ryl, Sayed S Abd El-Rehim
In this paper, we demonstrated, for the first time, aluminum titania nanoparticle (Al-TiO2 NP) composites with variable amounts of TiO2 NPs as nonprecious active catalysts for the electrochemical generation of H2. These materials were synthesized by mixing desired amounts of hydrogen titanate nanotubes (TNTs), fabricated here by a cost-effective approach at moderate hydrothermal conditions, with aluminum powder (purity 99.7%; size 35 μm). The mixture was compacted under an applied uniaxial stress of 300 MPa followed by sintering at 500 °C for 1 h...
September 14, 2016: ACS Applied Materials & Interfaces
Riccardo Borgani, Love K H Pallon, Mikael S Hedenqvist, Ulf W Gedde, David B Haviland
We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties...
September 14, 2016: Nano Letters
Umapada Pal, Alberto Sandoval, Sergio Isaac Uribe Madrid, Grisel Corro, Vivek Sharma, Paritosh Mohanty
Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes...
November 2016: Chemosphere
Yanan Chen, Yiju Li, Yanbin Wang, Kun Fu, Valencia A Danner, Jiaqi Dai, Steven D Lacey, Yonggang Yao, Liangbing Hu
High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating...
September 14, 2016: Nano Letters
Mengqi Li, Dongqing Li
This paper presents experimental investigations of the fabrication and the motion of electrically anisotropic Janus droplets in a microchannel under externally applied direct current (DC) electrical field. The fabrication method of the Janus droplets is presented first. To begin, oil droplets are coated uniformly with positively charged nanoparticles in the aluminum oxide nanoparticle suspension. The electrically anisotropic Janus droplets are formed when the nanoparticles are accumulated to one side of the droplets in response to externally applied direct-current electric field...
August 8, 2016: Electrophoresis
Jongmin Cho, Min Wang, Carlos Gonzalez-Lepera, Osama Mawlawi, Sang Hyun Cho
PURPOSE: Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources...
August 2016: Medical Physics
S M Hasan, R S Thompson, H Emery, A L Nathan, A C Weems, F Zhou, M B B Monroe, D J Maitland
Shape memory polymer (SMP) foams were synthesized with three different nanoparticles (tungsten, silicon dioxide, and aluminum oxide) for embolization of cerebral aneurysms. Ultra-low density SMP foams have previously been utilized for aneurysm occlusion, resulting in a rapid, stable thrombus. However, the small cross section of foam struts can potentially lead to fracture and particulate generation, which would be a serious adverse event for an embolic device. The goal of this study was to improve the mechanical properties of the system by physically incorporating fillers into the SMP matrix...
2016: RSC Advances
K Jiang, P Pinchuk
Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant...
August 26, 2016: Nanotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"