Read by QxMD icon Read

Efflux pumps

Pierre Dehoux, Jean Christophe Marvaud, Amr Abouelleil, Ashlee M Earl, Thierry Lambert, Catherine Dauga
BACKGROUND: Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C...
October 21, 2016: BMC Genomics
Narges Abdali, Jerry Matthew Parks, Keith Haynes, Julie L Chaney, Adam T Green, David Wolloscheck, John K Walker, Valentin V Rybenkov, Jerome Yves Baudry, Jeremy C Smith, Helen I Zgurskaya
Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for development of effective EPIs, especially in light of constantly emerging resistance. Here, we describe EPIs that interact with periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel...
October 21, 2016: ACS Infectious Diseases
Çiğdem Yılmaz, Gülay Özcengiz
The discovery of penicillin followed by streptomycin, tetracycline, cephalosporins and other natural, semi-synthetic and synthetic antimicrobials completely revolutionized medicine by reducing human morbidity and mortality from most of the common infections. However, shortly after they were introduced to clinical practice, the development of resistance was emerged. The decreasing interest from antibiotic industry in spite of rapid global emergence of antibiotic resistance is a tough dilemma from the pointview of public health...
October 17, 2016: Biochemical Pharmacology
Sandrine Alibert, Joannah N'Gompazza Diarra, Jessica Hernandez, Aurélien Stutzmann, Marwa Fouad, Gérard Boyer, Jean-Marie Pagès
Worrying levels of bacterial resistance have been reported worldwide involving the failure of many available antibiotic treatments. Multidrug resistance (MDR) in Gram-negative bacteria is often ascribed to the presence of multiple and different resistance mechanisms in the same strain. RND efflux pumps play a major role and are an attractive target to discover new antibacterial drugs. Areas covered: This review discusses the prevalence of efflux pumps, their overexpression in clinical scenarios, their polyselectivity, their effect on the intracellular concentrations of various antibiotics associated with the alteration of the membrane permeability and their involvement in pathogenicity are discussed...
October 20, 2016: Expert Opinion on Drug Metabolism & Toxicology
Baki Vijaya Bhaskar, Tirumalasetty Muni Chandra Babu, Netala Vasudeva Reddy, Wudayagiri Rajendra
Emerging drug resistance in clinical isolates of Staphylococcus aureus might be implicated to the overexpression of NorA efflux pump which is capable of extruding numerous structurally diverse compounds. However, NorA efflux pump is considered as a potential drug target for the development of efflux pump inhibitors. In the present study, NorA model was constructed based on the crystal structure of glycerol-3-phosphate transporter (PDBID: 1PW4). Molecular dynamics (MD) simulation was performed using NAMD2.7 for NorA which is embedded in the hydrated lipid bilayer...
2016: Drug Design, Development and Therapy
A Cherkaoui, S M Diene, A Renzoni, S Emonet, G Renzi, P François, J Schrenzel
OBJECTIVES: The aim of the present work was to investigate the potential roles of PBPs, efflux pumps, and slow drug influx for imipenem heteroresistance in nontypeable Haemophilus influenzae (NTHi). METHODS: The 59 NTHi clinical isolates examined in this study were collected at Geneva University Hospitals between 2009 and 2014. Alterations in PBPs were investigated by gene sequencing. To evaluate the affinities of the PBPs to imipenem, steady-state concentration-response experiments were carried out using imipenem in a competition assay with Bocillin-FL...
October 15, 2016: Clinical Microbiology and Infection
Jinshan Jin, Ying-Hsin Hsieh, Jianmei Cui, Krishna Damera, Chaofeng Dai, Arpana S Chaudhary, Hao Zhang, Hsiuchin Yang, Nannan Cao, Chun Jiang, Martti Vaara, Binghe Wang, Phang C Tai
With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram-negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad-spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram-positive bacteria. However, we have not achieved the same level of success against Gram-negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors...
October 18, 2016: ChemMedChem
Bożena Karolewicz
In the article, groups of multifunctional polymers used in drug dosage form technology were classified and evaluated. These compounds, in addition to their basic function as excipients, may have additional properties, e.g. stimuli sensitivity, enzyme inhibition, intestinal epithelium penetration enhancement, efflux pump inhibition, taste-masking, pharmacological activity and the ability to interact with enzymes responsible for drug metabolism. While classifying specific groups of multifunctional polymers, special emphasis was placed on the advantages of using them when designing new drug...
September 2016: Saudi Pharmaceutical Journal: SPJ: the Official Publication of the Saudi Pharmaceutical Society
Tomasz Wołkowicz, Jan Andrzej Patzer, Wanda Kamińska, Rafał Gierczyński, Danuta Dzierżanowska
This study aimed to analyse the distribution of carbapenem resistance mechanisms among Pseudomonas aeruginosa clinical isolates. Fifty-five P. aeruginosa isolates, resistant both to imipenem and meropenem, from children hospitalised in 2009-2010 were studied. All strains were genotyped by pulsed-field gel electrophoresis (PFGE). Mutations in the oprD gene and the occurrence of insertion sequences (ISs) were determined by DNA sequencing. Mex efflux systems were determined by analysis using the efflux pump inhibitor Phe-Arg β-naphthylamide...
October 8, 2016: Journal of Global Antimicrobial Resistance
Adrian Low, Charmaine Ng, Jianzhong He
Urban watersheds from point sources are potential reservoirs of antibiotic resistance genes (ARGs). However, few studies have investigated urban watersheds of non-point sources. To understand the type of ARGs and bacteria that might carry such genes, we investigated two non-point source urban watersheds with different land-use profiles. Antibiotic resistance levels of two watersheds (R1, R3) were examined using heterotrophic plate counts (HPC) as a culturing method to obtain counts of bacteria resistant to seven antibiotics belonging to different classes (erythromycin, kanamycin, lincomycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim)...
September 20, 2016: Water Research
Xiaojuan Huang, Jung-Ho Shin, Azul Pinochet-Barros, Tina T Su, John D Helmann
The Bacillus subtilis MntR metalloregulatory protein senses manganese, an essential element required for central metabolism, oxidative stress resistance and replication. An mntR null mutant is highly sensitive to Mn(II) intoxication, which is attributed in part to the constitutive expression of two importers: the proton-dependent NRAMP family transporter MntH and the ABC transporter MntABCD. Here, we show that an mntR null mutant is still sensitive to Mn(II) intoxication even if both of the import systems are absent...
October 17, 2016: Molecular Microbiology
Dujuan Zhao, Huiyuan Zhang, Shengfeng Yang, Wenxiu He, Yuxia Luan
The main cause of multidrug resistance (MDR) is overexpression of active efflux transporters, such as P-glycoprotein (P-gp). To reverse MDR and improve the chemotherapy effect of paclitaxel (PTX), we propose a new drug delivery system based on mixed micelles constructed with d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) and the mPEG-SS-PTX conjugate with consideration that TPGS is a P-gp inhibitor that can block the cancer cell action of pumping drugs outside of cells and can enhance the anticancer effect...
October 13, 2016: International Journal of Pharmaceutics
Atefeh Abdollahi Gohar, Hamid Badali, Tahereh Shokohi, Mojtaba Nabili, Nasrin Amirrajab, Maryam Moazeni
Clinical management of fungal diseases is compromised by the emergence of antifungal drug resistance in fungi, which leads to elimination of available drug classes as treatment options. An understanding of antifungal resistance at molecular level is, therefore, essential for the development of strategies to combat the resistance. This study presents the assessment of molecular mechanisms associated with fluconazole resistance in clinical Candida glabrata isolates originated from Iran. Taking seven distinct fluconazole-resistant C...
October 15, 2016: Mycopathologia
Juan Manuel Belardinelli, Amira Yazidi, Liang Yang, Lucien Fabre, Wei Li, Benoit Jacques, Shiva Kumar Angala, Isabelle Rouiller, Helen I Zgurskaya, Jurgen Sygusch, Mary Jackson
The MmpL family of proteins translocates complex (glyco)lipids and siderophores across the cell envelope of mycobacteria and closely related Corynebacteriaceae and plays important roles in the biogenesis of the outer membrane of these organisms. Despite their significance in the physiology and virulence of Mycobacterium tuberculosis, and from the perspective of developing novel antituberculosis agents, little is known about their structure and mechanism of translocation. In this study, the essential mycobacterial mycolic acid transporter, MmpL3, and its orthologue in Corynebacterium glutamicum, CmpL1, were investigated as prototypical MmpL proteins to gain insight into the transmembrane topology, tertiary and quaternary structures, and functional regions of this transporter family...
October 14, 2016: ACS Infectious Diseases
Malkeet Kumar, Kawaljit Singh, Krupa Naran, Fahreta Hamzabegovic, Daniel F Hoft, Digby F Warner, Peter Ruminski, Getahun Abate, Kelly Chibale
Efflux pumps are considered a major potential contributor to the development of various forms of resistance in Mycobacterium tuberculosis leading to the emergence of multidrug-resistant tuberculosis (TB). Verapamil (VER) and tricyclic chemosensitizers such as the phenothiazines are known to possess efflux pump inhibition properties and have demonstrated significant efficacy in various TB disease models. Novel hybrid molecules based on fusion of the VER substructure with various tricyclic, as well as nontricyclic, chemosensitizer cores or their structural motifs are described...
October 14, 2016: ACS Infectious Diseases
Wanida Phetsang, Ruby Pelingon, Mark S Butler, Sanjaya Kc, Miranda E Pitt, Geraldine Kaeslin, Matthew A Cooper, Mark A T Blaskovich
Reduced susceptibility to antimicrobials in Gram-negative bacteria may result from multiple resistance mechanisms, including increased efflux pump activity or reduced porin protein expression. Up-regulation of the efflux pump system is closely associated with multidrug resistance (MDR). To help investigate the role of efflux pumps on compound accumulation, a fluorescence-based assay was developed using fluorescent derivatives of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that inhibits an intracellular target, dihydrofolate reductase (DHFR)...
October 14, 2016: ACS Infectious Diseases
Zhe-Xian Tian, Xue-Xian Yi, Anna Cho, Fergal O'Gara, Yi-Ping Wang
Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. In this study, we demonstrate that CpxR, previously identified as a regulator of the cell envelope stress response in Escherichia coli, is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. A conserved CpxR binding site was identified upstream of the mexA promoter in all genome-sequenced P. aeruginosa strains. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR, in P...
October 2016: PLoS Pathogens
Raquel T Lima, Diana Sousa, Ana M Paiva, Andreia Palmeira, João Barbosa, Madalena Pedro, Madalena M Pinto, Emília Sousa, M Helena Vasconcelos
(1) Background: Our previous studies unveiled the hit thioxanthone TXA1 as an inhibitor of P-glycoprotein (drug efflux pump) and of human tumor cells growth, namely of melanoma cells. Since TXA1 is structurally similar to lucanthone (an autophagy inhibitor and apoptosis inducer) and to N(10)-substituted phenoxazines (isosteres of thioxanthones, and autophagy inducers), this study aimed at further assessing its cytotoxic mechanism and evaluating its potential as an autophagy modulator in A375-C5 melanoma cells; (2) Methods: Flow cytometry with propidium iodide (PI) for cell cycle profile analysis; Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry with Annexin V/PI labeling and Western blot for apoptosis analysis were conducted...
October 10, 2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Jose A Garcia-Salcedo, Juan D Unciti-Broceta, Javier Valverde-Pozo, Miguel Soriano
Leishmania and Trypanosoma are members of the Trypanosomatidae family that cause severe human infections such as leishmaniasis, Chagas disease, and sleeping sickness affecting millions of people worldwide. Despite efforts to eradicate them, migrations are expanding these infections to developing countries. There are no vaccines available and current treatments depend only on chemotherapy. Drug resistance is a major obstacle for the treatment of these diseases given that existing drugs are old and limited, with some having severe side effects...
2016: Frontiers in Pharmacology
Yeji Lee, Olviyani Nasution, Young Mi Lee, Eunjung Kim, Wonja Choi, Wankee Kim
PMA1 encodes a transmembrane polypeptide that functions to pump protons out of the cell. Ectopic PMA1 overexpression in Saccharomyces cerevisiae enhances tolerance to weak acids, reactive oxygen species (ROS) and ethanol, and changes the following physiological properties: better proton efflux, lower membrane permeability, and lessened internal hydrogen peroxide production. The enhanced stress tolerance was dependent on the mitogen-activated protein kinase (MAPK) Hog1 of the high osmolarity glycerol (HOG) pathway, but not the MAPK Slt2 of the cell wall integrity (CWI) pathway; however, a PMA1 overexpression constitutively activated both Hog1 and Slt2...
October 11, 2016: Applied Microbiology and Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"