Read by QxMD icon Read

Chondrocyte motility

Li Yao, Nikol Flynn
BACKGROUND CONTEXT: Advances in the development of biomaterials and stem cell therapy provide a promising approach to regenerating degenerated discs. The normal nucleus pulposus (NP) cells exhibit similar phenotype to chondrocytes. Because dental pulp stem cells (DPSCs) can be differentiated into chondrogenic cells, the DPSCs and DPSCs-derived chondrogenic cells encapsulated in type I and type II collagen hydrogels can potentially be transplanted into degenerated NP to repair damaged tissue...
February 13, 2018: Spine Journal: Official Journal of the North American Spine Society
Mari S Lehti, Henna Henriksson, Petri Rummukainen, Fan Wang, Liina Uusitalo-Kylmälä, Riku Kiviranta, Terhi J Heino, Noora Kotaja, Anu Sironen
Sperm flagellar protein 2 (SPEF2) is essential for motile cilia, and lack of SPEF2 function causes male infertility and primary ciliary dyskinesia. Cilia are pointing out from the cell surface and are involved in signal transduction from extracellular matrix, fluid flow and motility. It has been shown that cilia and cilia-related genes play essential role in commitment and differentiation of chondrocytes and osteoblasts during bone formation. Here we show that SPEF2 is expressed in bone and cartilage. The analysis of a Spef2 knockout (KO) mouse model revealed hydrocephalus, growth retardation and death prior to five weeks of age...
January 16, 2018: Scientific Reports
Michael J Chen, Jonathan P Whiteley, Colin P Please, Andrea Schwab, Franziska Ehlicke, Sarah L Waters, Helen M Byrne
The differentiation of mesenchymal stem cells (MSCs) into chondrocytes (native cartilage cells), or chondrogenesis, is a key step in the tissue engineering of articular cartilage, where the motility and high proliferation rate of MSCs used as seed cells are exploited. Chondrogenesis is regulated by transforming growth factor-beta (TGF-β), a short-lived cytokine whose effect is prolonged by storage in the extracellular matrix. Tissue engineering applications require the complete differentiation of an initial population of MSCs, and two common strategies used to achieve this in vitro are (1) co-culture the MSCs with chondrocytes, which constitutively produce TGF-β; or (2) add exogenous TGF-β...
February 14, 2018: Journal of Theoretical Biology
Heidi L Reesink, Ryan M Sutton, Carolyn R Shurer, Ryan P Peterson, Julie S Tan, Jin Su, Matthew J Paszek, Alan J Nixon
BACKGROUND: Mesenchymal stromal cells (MSCs) can be used intra-articularly to quell inflammation and promote cartilage healing; however, mechanisms by which MSCs mitigate joint disease remain poorly understood. Galectins, a family of β-galactoside binding proteins, regulate inflammation, adhesion and cell migration in diverse cell types. Galectin-1 and galectin-3 are proposed to be important intra-articular modulators of inflammation in both osteoarthritis and rheumatoid arthritis. Here, we asked whether equine bone marrow-derived MSCs (BMSCs) express higher levels of galectin-1 and -3 relative to synovial fibroblasts and chondrocytes and if an inflammatory environment affects BMSC galectin expression and motility...
November 2, 2017: Stem Cell Research & Therapy
Sirong Shi, Shiyu Lin, Xiaoru Shao, Qianshun Li, Zhang Tao, Yunfeng Lin
OBJECTIVES: Contemporarily, a highly increasing attention was paid to nanoconstructs, particularly DNA nanostructures possessing precise organization, functional manipulation, biocompatibility and biodegradability. Amongst these DNA nanomaterials, tetrahedral DNA nanostructures (TDNs) are a significantly ideal bionanomaterials with focusing on the property that can be internalized into cytoplasm in the absence of transfection. Therefore, the focus of this study was on investigating the influence of TDNs on the chondrocytes locomotion...
October 2017: Cell Proliferation
Lan Hai, Deepak S Hiremath, Marilène Paquet, Prema Narayan
The luteinizing hormone receptor (LHCGR) is necessary for fertility, and genetic mutations cause defects in reproductive development and function. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP). We have previously characterized a mouse model (KiLHRD582G) for FMPP that exhibits the same phenotype of precocious puberty, Leydig cell hyperplasia, and elevated testosterone as boys with the disorder. We observed that KiLHRD582G male mice became infertile by 6 months of age, although sperm count and motility were normal...
May 1, 2017: Biology of Reproduction
Agnieszka Strzelecka-Kiliszek, Saida Mebarek, Monika Roszkowska, René Buchet, David Magne, Slawomir Pikula
BACKGROUND: Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW: Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts...
May 2017: Biochimica et Biophysica Acta
A S Pollard, B G Charlton, J R Hutchinson, T Gustafsson, I M McGonnell, J A Timmons, A A Pitsillides
Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance...
February 6, 2017: Scientific Reports
Rachel N Frisch, Kevin M Curtis, Kristina K Aenlle, Guy A Howard
INTRODUCTION: Bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into multiple cell types, including osteoblasts, chondrocytes, and adipocytes. These pluripotent cells secrete hepatocyte growth factor (HGF), which regulates cell growth, survival, motility, migration, mitogenesis and is important for tissue development/regeneration. HGF has four splice variants, NK1, NK2, NK3, and NK4 which have varying functions and affinities for the HGF receptor, cMET. HGF promotes osteoblastic differentiation of MSCs into bone forming cells, playing a role in bone development, health and repair...
September 2016: Expert Opinion on Therapeutic Targets
Hyunjun Shin, Mi Nam Lee, Jin Seung Choung, Sanghee Kim, Byung Hyune Choi, Minsoo Noh, Jennifer H Shin
The expansion of autologous chondrocytes in vitro is used to generate sufficient populations for cell-based therapies. However, during monolayer culture, chondrocytes lose inherent characteristics and shift to fibroblast-like cells as passage number increase. Here, we investigated passage-dependent changes in cellular physiology, including cellular morphology, motility, and gene and protein expression, as well as the role of focal adhesion and cytoskeletal regulation in the dedifferentiation process. We found that the gene and protein expression levels of both the focal adhesion complex and small Rho GTPases are upregulated with increasing passage number and are closely linked to chondrocyte dedifferentiation...
August 2016: Journal of Cellular Physiology
Frank Y Zhou, Ai-Qun Wei, Bojiang Shen, Lisa Williams, Ashish D Diwan
BACKGROUND: Intervertebral disc degeneration is a major cause of low back pain. Previous researches have demonstrated local administration of signalling molecules as potential biological therapies for disc regeneration. Our laboratory has published encouraging results for effectiveness of injection of the cartilage derived morphogenetic protein-2 (CDMP-2) into ovine discs following annular injury. To elucidate the mechanisms underpinning these in vivo effects, this project aimed to investigate the potential of CDMP-2 on cellular migration, proliferation and extracellular matrix production in a human chondrocytic cell line...
2015: International Journal of Spine Surgery
Yun Hyun Huh, Gyuseok Lee, Keun-Bae Lee, Jeong-Tae Koh, Jang-Soo Chun, Je-Hwang Ryu
INTRODUCTION: Pannus formation and resulting cartilage destruction during rheumatoid arthritis (RA) depends on the migration of synoviocytes to cartilage tissue. Here, we focused on the role of hypoxia-inducible factor (HIF)-2α-induced chemokines by chondrocytes in the regulation of fibroblast-like synoviocyte (FLS) migration into the cartilage-pannus interface and cartilage erosion. METHODS: Collagen-induced arthritis (CIA), K/BxN serum transfer, and tumor necrosis factor-α transgenic mice were used as experimental RA models...
2015: Arthritis Research & Therapy
Kang Tian, Weiliang Zhong, Xifu Zheng, Jinrui Zhang, Pixu Liu, Weiguo Zhang, Han Liu
Cartilage defect is an intractable clinical problem. Therapeutic strategies for cartilage repair are far from optimal due to poor proliferation capacity of chondrocytes. Autologous chondrocyte implantation is a cell based therapy that uses in vitro amplified healthy chondrocytes from the patient. However, chondrocyte dedifferentiation during in vitro culture limits its application. Neuroleukin (NLK) is a multifunctional protein that stimulates cell growth and migration, together with its receptor autocrine motility factor receptor (AMFR, also called gp78)...
October 13, 2015: Scientific Reports
Florentine C Moazedi-Fuerst, Gerald Gruber, Martin H Stradner, Diego Guidolin, Jonathan C Jones, Koppany Bodo, Karin Wagner, Daniela Peischler, Verena Krischan, Jennifer Weber, Patrick Sadoghi, Mathias Glehr, Andreas Leithner, Winfried B Graninger
Formation of chondrocyte clusters is not only a morphological sign of osteoarthritis but it is also observed in cell culture. Active locomotion of chondrocytes is controlled by integrins in vitro. Integrins bind to Laminin-A4 (LAMA4), a protein that is highly expressed in vivo in clusters of hypertrophic chondrocytes. We tested if LAMA4 is relevant for cluster formation. Human chondrocytes were cultured in a 2D matrigel model and treated with different concentrations of a monoclonal inhibitory anti-LAMA4-antibody...
March 2016: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
Niina Hopper, Frances Henson, Roger Brooks, Erden Ali, Neil Rushton, John Wardale
INTRODUCTION: A major problem in cartilage repair is the lack of chondrogenic cells migrating from healthy tissue into defects. Cartilage is essentially avascular and therefore its healing is not considered to involve mononuclear cells. Peripheral blood derived mononuclear cells (PBMC) offer a readily available autologous cell source for clinical use and therefore this study was designed to evaluate the effects of PBMCs on chondrocytes and cartilage. METHODS: Human primary chondrocytes and cartilage tissue explants were taken from patients undergoing total knee replacement (n = 17)...
2015: Arthritis Research & Therapy
Liru Li, Dejun Wang, Jun Zhou, Yan Cheng, Tian Liang, Guangmei Zhang
The mesenchymal stem cells (MSCs) derived from amniotic fluid (AF) have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs) and detect their ovarian cancer tropsim in nude mice model...
2015: PloS One
A R Tan, E Alegre-Aguarón, G D O'Connell, C D VandenBerg, R K Aaron, G Vunjak-Novakovic, J Chloe Bulinski, G A Ateshian, C T Hung
OBJECTIVE: Galvanotaxis, the migratory response of cells in response to electrical stimulation, has been implicated in development and wound healing. The use of mesenchymal stem cells (MSCs) from the synovium (synovium-derived stem cells, SDSCs) has been investigated for repair strategies. Expansion of SDSCs is necessary to achieve clinically relevant cell numbers; however, the effects of culture passage on their subsequent cartilaginous extracellular matrix production are not well understood...
February 2015: Osteoarthritis and Cartilage
G Aaron Hobbs, Lauren E Mitchell, Megan E Arrington, Harsha P Gunawardena, Molly J DeCristo, Richard F Loeser, Xian Chen, Adrienne D Cox, Sharon L Campbell
The Rac1 GTPase is an essential and ubiquitous protein that signals through numerous pathways to control critical cellular processes, including cell growth, morphology, and motility. Rac1 deletion is embryonic lethal, and its dysregulation or mutation can promote cancer, arthritis, cardiovascular disease, and neurological disorders. Rac1 activity is highly regulated by modulatory proteins and posttranslational modifications. Whereas much attention has been devoted to guanine nucleotide exchange factors that act on Rac1 to promote GTP loading and Rac1 activation, cellular oxidants may also regulate Rac1 activation by promoting guanine nucleotide exchange...
February 2015: Free Radical Biology & Medicine
R Ruhlen, K Marberry
UNLABELLED: The presence and role of primary, or non-motile, cilia on chondrocytes has confused cartilage researchers for decades. Initial explanations attributed a vestigial nature to chondrocyte cilia. Evidence is now emerging that supports the role of the chondrocyte primary cilium as a sensory organelle, in particular, in mechanotransduction and as a compartment for signaling pathways. Early electron microscopy images depicted bent cilia aligned with the extracellular matrix (ECM) in a manner that suggested a response to mechanical forces...
August 2014: Osteoarthritis and Cartilage
Ganna Aleshcheva, Jayashree Sahana, Xiao Ma, Jens Hauslage, Ruth Hemmersbach, Marcel Egli, Manfred Infanger, Johann Bauer, Daniela Grimm
Tissue engineering of chondrocytes on a Random Positioning Machine (RPM) is a new strategy for cartilage regeneration. Using a three-dimensional RPM, a device designed to simulate microgravity on Earth, we investigated the early effects of RPM exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of RPM exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis (TGF-β1, osteopontin); and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin)...
2013: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"