Read by QxMD icon Read

Bone morphogenic protein

Hiroki Goto, Miki Nishio, Yoko To, Tatsuya Oishi, Yosuke Miyachi, Tomohiko Maehama, Hiroshi Nishina, Haruhiko Akiyama, Tak Wah Mak, Yuma Makii, Taku Saito, Akihiro Yasoda, Noriyuki Tsumaki, Akira Suzuki
Hippo signaling is modulated in response to cell density, external mechanical forces, or rigidity of the extracellular matrix (ECM). The Mps one binder kinase activator (MOB) adaptor proteins are core components of Hippo signaling and have important effects on Yes-associated protein-1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which are potent transcriptional regulators. YAP1/TAZ are key contributors to cartilage and bone development but the molecular mechanisms by which the Hippo pathway controls chondrogenesis are largely unknown...
March 6, 2018: Development
Anne-Clémence Vion, Silvanus Alt, Alexandra Klaus-Bergmann, Anna Szymborska, Tuyu Zheng, Tijana Perovic, Adel Hammoutene, Marta Bastos Oliveira, Eireen Bartels-Klein, Irene Hollfinger, Pierre-Emmanuel Rautou, Miguel O Bernabeu, Holger Gerhardt
Blood flow shapes vascular networks by orchestrating endothelial cell behavior and function. How endothelial cells read and interpret flow-derived signals is poorly understood. Here, we show that endothelial cells in the developing mouse retina form and use luminal primary cilia to stabilize vessel connections selectively in parts of the remodeling vascular plexus experiencing low and intermediate shear stress. Inducible genetic deletion of the essential cilia component intraflagellar transport protein 88 (IFT88) in endothelial cells caused premature and random vessel regression without affecting proliferation, cell cycle progression, or apoptosis...
March 2, 2018: Journal of Cell Biology
Ze-Jian Li, Chun-Ting Lu, Ren-Fa Lai
To explore the ectopic osteogenesis effect of sequential sustained release application of recombinant human bone morphogenic protein-2 (rhBMP-2) and basic fibroblast growth factor (bFGF). Antigen-extracted xenogeneic cancellous bone coupled with growth factor-loaded chitosan nanocapsules were implanted in rats in intramuscular site in accordance with the following experimental pattern: group A: simultaneous burst release of rhBMP-2 and bFGF; group B: simultaneous sustained release of rhBMP-2 and bFGF; group C: preferential burst release of rhBMP-2, then sustained release of bFGF; group D: preferential burst release of bFGF, then sustained release of rhBMP-2; group E: sustained release of rhBMP-2 alone; group F: sustained release of bFGF alone, blank control group G: antigen-extracted xenogeneic cancellous bone graft only; negative control group H: not filled with anything...
January 1, 2018: Journal of Biomaterials Applications
Suneel Gupta, Michael K Fink, Arkasubhra Ghosh, Ratnakar Tripathi, Prashant R Sinha, Ajay Sharma, Nathan P Hesemann, Shyam S Chaurasia, Elizabeth A Giuliano, Rajiv R Mohan
Purpose: We tested the potential of bone morphogenic protein 7 (BMP7) and hepatocyte growth factor (HGF) combination gene therapy to treat preformed corneal fibrosis using established rabbit in vivo and human in vitro models. Methods: Eighteen New Zealand White rabbits were used. Corneal fibrosis was produced by alkali injury. Twenty-four hours after scar formation, cornea received topically either balanced salt solution (BSS; n = 6), polyethylenimine-conjugated gold nanoparticle (PEI2-GNP)-naked plasmid (n = 6) or PEI2-GNP plasmids expressing BMP7 and HGF genes (n = 6)...
February 1, 2018: Investigative Ophthalmology & Visual Science
Jingjing Wang, Jian Xu, Xinyun Zhao, Weiping Xie, Hong Wang, Hui Kong
Regulation of leukocyte-endothelial cell interactions and of vascular permeability plays a critical role in the maintenance of functional pulmonary microvascular barriers. Little is yet known about the effect of the Rho-associated protein kinase (ROCK) inhibitor fasudil on leukocyte-endothelial cell interactions or the underlying mechanism. In the present study, as evaluated using co-culture systems of neutrophils and human pulmonary microvascular endothelial cells (HPMECs), fasudil dose-dependently suppressed neutrophil chemotaxis by decreasing the production of chemotactic factors in lipopolysaccharide (LPS)-treated HPMECs...
February 23, 2018: Experimental Cell Research
Brittany E Haws, Benjamin Khechen, Ankur S Narain, Fady Y Hijji, Kaitlyn L Cardinal, Jordan A Guntin, Kern Singh
STUDY DESIGN: Retrospective Analysis OBJECTIVE.: The aim of this study was to determine whether an association between increased acute pain, postoperative time, and direct hospital costs exists between the use of iliac crest bone grafting (ICBG) and bone morphogenic protein (BMP)-2 following a primary, single-level minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). SUMMARY OF BACKGROUND DATA: ICBG has been associated with enhanced fusion rates...
February 16, 2018: Spine
Fan Liang, Hyuma Leland, Breanna Jedrzejewski, Allyn Auslander, Seija Maniskas, Jordan Swanson, Mark Urata, Jeffrey Hammoudeh, William Magee
Alveolar cleft reconstruction has historically relied on autologous iliac crest bone grafting (ICBG), but donor site morbidity, pain, and prolonged hospitalization have prompted the search for bone graft substitutes. The authors evaluated bone graft substitutes with the highest levels of evidence, and highlight the products that show promise in alveolar cleft repair and in maxillary augmentation. This comprehensive review guides the craniofacial surgeon toward safe and informed utilization of biomaterials in the alveolar cleft...
February 14, 2018: Journal of Craniofacial Surgery
Mark McCully, João Conde, Pedro V Baptista, Margaret Mullin, Matthew J Dalby, Catherine C Berry
Mesenchymal stem cells are multipotent adult stem cells capable of generating bone, cartilage and fat, and are thus currently being exploited for regenerative medicine. When considering osteogenesis, developments have been made with regards to chemical induction (e.g. differentiation media) and physical induction (e.g. material stiffness, nanotopography), targeting established early transcription factors or regulators such as runx2 or bone morphogenic proteins and promoting increased numbers of cells committing to osteo-specific differentiation...
2018: PloS One
Zar Chi Thent, Gabriele Ruth Anisah Froemming, Suhaila Muid
Bisphenol A (BPA) (2,2,-bis (hydroxyphenyl) propane), a well-known endocrine disruptor (ED), is the exogenous chemical that mimic the natural endogenous hormone like oestrogen. Due to its extensive exposure to humans, BPA is considered to be a major toxicological agent for general population. Environmental exposure of BPA results in adverse health outcomes including bone loss. BPA disturbs the bone health by decreasing the plasma calcium level and inhibiting the calcitonin secretion. BPA also stimulated differentiation and induced apoptosis in human osteoblasts and osteoclasts...
February 9, 2018: Life Sciences
Ashraf Al Madhoun, Sarah Alkandari, Hamad Ali, Neus Carrio, Maher Atari, Milad S Bitar, Fahd Al-Mulla
The human umbilical cord Wharton's Jelly- and the bone marrow- mesenchymal stem cells (WJ-MSCs and BM-MSCs, respectively) and the newly identified dental pulp pluripotent-like stem cells (DPPSCs) are new sources for stem cells with prospective use in cell regeneration and therapy. These cells are self-renewable, can be differentiated into several lineages, and can potentiate the immune responses. We hypothesized that three-dimensional (3D) culture conditions and directed differentiation using specific signaling regulators will enhance an efficient generation of mesoderm (MD) lineage independent from the origin or source of the stem cells...
February 2018: Cellular Reprogramming
Masako Fujioka-Kobayashi, Mustafa Abd El Raouf, Nikola Saulacic, Eizaburo Kobayashi, Yufeng Zhang, Benoit Schaller, Richard J Miron
Recombinant human bone morphogenic protein (rhBMP) 9 has recently been reported to have more osteopromotive potential in vitro when compared to rhBMP2. The aim of the present study was to investigate the bone-inducing potential of rhBMP2 and rhBMP9. We compared rhBMP2, rhBMP7 and rhBMP9 at 5 different concentrations and showed convincingly that rhBMP9 possesses much greater potential for osteoblast differentiation even at 20 times lower concentrations in vitro. We further show that Noggin, an inhibitor for rhBMP2-induced osteogenesis, did not alter rhBMP9-induced osteogenesis...
February 2, 2018: Journal of Biomedical Materials Research. Part A
Patrick Walsh, Vincent Truong, Caitlin Hill, Nicolas D Stoflet, Jessica Baden, Walter C Low, Susan A Keirstead, James R Dutton, Ann M Parr
The use of defined conditions for derivation, maintenance, and differentiation of human-induced pluripotent stem cells (hiPSCs) provides a superior experimental platform to discover culture responses to differentiation cues and elucidate the basic requirements for cell differentiation and fate restriction. Adoption of defined systems for reprogramming, undifferentiated growth, and differentiation of hiPSCs was found to significantly influence early stage differentiation signaling requirements and temporal kinetics for the production of primitive neuroectoderm...
December 2017: Cell Transplantation
Edward H Liao, Lindsay Gray, Kazuya Tsurudome, Wassim El Mounzer, Fatima Elazzouzi, Christopher Baim, Sarah Farzin, Mario R Calderon, Grant Kauwe, A Pejmun Haghighi
Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites...
January 26, 2018: PLoS Genetics
Silja Burkhard, Vincent van Eif, Laurence Garric, Vincent M Christoffels, Jeroen Bakkers
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells...
April 27, 2017: Journal of Cardiovascular Development and Disease
Sharon J Brown, Sarah A Turner, Birender S Balain, Neil T Davidson, Sally Roberts
Objective The purpose of this study was to investigate whether a simple, biologically robust method for inducing calcification of degenerate intervertebral discs (IVD) could be developed to provide an alternative treatment for patients requiring spinal fusion. Design Nucleus pulposus (NP) cells isolated from 14 human IVDs were cultured in monolayer and exposed to osteogenic medium, 1,25-dihydroxyvitamin D3 (VitD3), parathyroid hormone (PTH), and bone morphogenic proteins (BMPs) 2/7 to determine if they could become osteogenic...
January 1, 2018: Cartilage
Yuanzhong Pan, Jie Chen, Yuanman Yu, Kai Dai, Jing Wang, Changsheng Liu
Sulfated polysaccharides are attractive semi-synthesized materials that can be used as a mimic of heparan sulfate to modulate the protein activity and other physiological processes. In this study, we employed sulfated chitosan to enhance the angiogenic capacity of bone morphogenic protein-2 (BMP-2). Bone marrow stromal cells (BMSCs) cultured in a combination of BMP-2 and 2-N,6-O-sulfated chitosan (SCS) group exhibited a higher cell viability and sprouting ability. The cells also secreted more VEGF and NO. The expression patterns of angiogenic and osteogenic genes were analyzed, and VEGFR2 signaling was found to play a role in the enhancing effect of SCS...
January 17, 2018: Biomaterials Science
Deepak Bushan Raina, David Larsson, Filip Mrkonjic, Hanna Isaksson, Ashok Kumar, Lars Lidgren, Magnus Tägil
In this study, a novel macroporous composite biomaterial consisting of gelatin-hydroxyapatite-calcium sulphate for delivery of bone morphogenic protein-2 (rhBMP-2) and zoledronic acid (ZA) has been developed. The biomaterial scaffold has a porous structure and functionalization of the scaffold with rhBMP-2 induces osteogenic differentiation of MC3T3-e1 cells seen by a significant increase in biochemical and genetic markers of osteoblastic differentiation. In-vivo muscle pouch experiments showed higher mineralization using scaffold+rhBMP-2 when compared to an approved absorbable collagen sponge (ACS)+rhBMP-2 as verified by micro-CT...
January 10, 2018: Journal of Controlled Release: Official Journal of the Controlled Release Society
Stuart A Newman, Tilmann Glimm, Ramray Bhat
The paired appendages (fins or limbs) of jawed vertebrates contain an endoskeleton consisting of nodules, bars and, in some groups, plates of cartilage, or bone arising from replacement of cartilaginous templates. The generation of the endoskeletal elements occurs by processes involving production and diffusion of morphogens, with, variously, positive and negative feedback circuits, adhesion, and receptor dynamics with similarities to the mechanism for chemical pattern formation proposed by Alan Turing. This review presents a unified interpretation of the evolution and functioning of these mechanisms...
January 8, 2018: Progress in Biophysics and Molecular Biology
Robert W Dettman, Derin Birch, Augusta Fernando, John A Kessler, Maria L V Dizon
Hypoxic-ischemic injury (HI) to the neonatal human brain results in myelin loss that, in some children, can manifest as cerebral palsy. Previously, we had found that neuronal overexpression of the bone morphogenic protein (BMP) inhibitor noggin during development increased oligodendroglia and improved motor function in an experimental model of HI utilizing unilateral common carotid artery ligation followed by hypoxia. As BMPs are known to negatively regulate oligodendroglial fate specification of neural stem cells and alter differentiation of committed oligodendroglia, BMP signaling is likely an important mechanism leading to myelin loss...
January 12, 2018: Developmental Neuroscience
Dan Wang, Xiaolai Chen, Ran Zhang
The present study investigated the capacity of Bone morphogenic protein and activin membrane‑bound inhibitor homolog (BAMBI) to regulate the migration and differentiation of macrophages in gliomas. Using a migration assay, it was determined that BAMBI stimulated monocytes migration in a dose‑dependent effect. When induced by phorbol myristate acetate (PMA) the monocytes differentiated into macrophages, and BAMBI also increased the migration of PMA‑induced macrophages compared with control cells. The expression of CD68 and BAMBI protein and mRNA in glioma and normal specimens were detected using immunohistochemistry and reverse transcription‑quantitative polymerase chain reaction, respectively...
December 20, 2017: Molecular Medicine Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"