Read by QxMD icon Read

LSD1 inhibitor

Yoshinori Ishikawa, Kanae Gamo, Masato Yabuki, Shinji Takagi, Kosei Toyoshima, Kazuhide Nakayama, Akiko Nakayama, Megumi Morimoto, Hitoshi Miyashita, Ryo Dairiki, Yukiko Hikichi, Naoki Tomita, Daisuke Tomita, Shinichi Imamura, Misa Iwatani, Yusuke Kamada, Satoru Matsumoto, Ryujiro Hara, Toshiyuki Nomura, Ken Tsuchida, Kazuhide Nakamura
Dysregulation of the histone demethylase LSD1, also known as KDM1A, has been implicated in the development of various cancers, including leukemia. Here we describe the anti-leukemic activity and mechanism of action of T-3775440, a novel irreversible LSD1 inhibitor. Cell growth analysis of leukemia cell lines revealed that acute erythroleukemia (AEL) and acute megakaryoblastic leukemia cells (AMKL) were highly sensitive to this compound. T-3775440 treatment enforced transdifferentiation of erythroid/megakaryocytic lineages into granulomonocytic-like lineage cells...
November 30, 2016: Molecular Cancer Therapeutics
Takayuki Tsutsumi, Keiichiro Iwao, Hideki Hayashi, Tomoko Kirihara, Takahiro Kawaji, Toshihiro Inoue, Shinjiro Hino, Mitsuyoshi Nakao, Hidenobu Tanihara
Purpose: The epigenetic mechanisms associated with ocular neurodegenerative diseases remain unclear. The present study aimed to determine the role of lysine-specific demethylase 1 (LSD1), which represses transcription by removing the methyl group from methylated lysine 4 of histone H3, in retinal ganglion cell (RGC) survival, and to investigate the details of the neuroprotective mechanism of tranylcypromine, a major LSD1 inhibitor. Methods: The authors evaluated whether tranylcypromine contributes to neuronal survival following stress-induced damage using primary cultured rat RGCs and in vivo N-methyl-D-aspartate (NMDA)-induced excitotoxicity...
November 1, 2016: Investigative Ophthalmology & Visual Science
Ying-Chao Duan, Yuan-Yuan Guan, Xiao-Yu Zhai, Li-Na Ding, Wen-Ping Qin, Dan-Dan Shen, Xue-Qi Liu, Xu-Dong Sun, Yi-Chao Zheng, Hong-Min Liu
Inhibition of lysine-specific demethylase 1 (LSD1) has recently emerged as an attractive therapeutic target for treating cancer and other diseases. As a continuity of our ongoing effort to identify novel small-molecule LSD1-inhibitors, we designed and synthesized a series of resveratrol derivatives, which were shown to be potent inhibitors of LSD1. Among them, compounds 4e and 4m displayed the most potent LSD1-inhibitory activities in enzyme assays, with IC50 values of 121 nM and 123 nM, respectively. Biochemistry study and docking analysis indicated that compounds 4e and 4m were reversible LSD1 inhibitors...
November 16, 2016: European Journal of Medicinal Chemistry
Yosuke Ota, Yukihiro Itoh, Asako Kaise, Kiminori Ohta, Yasuyuki Endo, Mitsuharu Masuda, Yoshihiro Sowa, Toshiyuki Sakai, Takayoshi Suzuki
Targeting cancer with small molecule prodrugs should help overcome problems associated with conventional cancer-targeting methods. Herein, we focused on lysine-specific demethylase 1 (LSD1) to trigger the controlled release of anticancer drugs in cancer cells, where LSD1 is highly expressed. Conjugates of the LSD1 inhibitor trans-2-phenylcyclopropylamine (PCPA) were used as novel prodrugs to selectively release anticancer drugs by LSD1 inhibition. As PCPA-drug conjugate (PDC) prototypes, we designed PCPA-tamoxifen conjugates 1 a and 1 b, which released 4-hydroxytamoxifen in the presence of LSD1 in vitro...
November 24, 2016: Angewandte Chemie
Yi-Chao Zheng, Dan-Dan Shen, Meng Ren, Xue-Qi Liu, Zhi-Ru Wang, Ying Liu, Qian-Na Zhang, Li-Juan Zhao, Li-Jie Zhao, Jin-Lian Ma, Bin Yu, Hong-Min Liu
Baicalin is one of the active ingredients in the skullcap, with a variety of pharmacological effects, such as blood pressure reduction, sedation, liver-protection, gallbladder-protection, anti-bacteria, and anti-inflammation. In our study, baicalin was first characterized as a LSD1 inhibitor with an IC50 of 3.01μM and showed strong LSD1 inhibitory effect in cells. Baicalin may serve as a template for designing flavone-based LSD1 inhibitors.
October 11, 2016: Bioorganic Chemistry
Shuai Wang, Li-Jie Zhao, Yi-Chao Zheng, Dan-Dan Shen, Er-Fei Miao, Xue-Peng Qiao, Li-Juan Zhao, Ying Liu, Ruilei Huang, Bin Yu, Hong-Min Liu
A new series of [1,2,4]triazolo[1,5-a]pyrimidine-based LSD1 inhibitors were designed, synthesized, and further evaluated for their cytotoxicity against MGC-803, EC109, A549 and PC-9 cells as well as the ability of inhibiting LSD1. Some of these compounds showed potent inhibition toward LSD1 and selectively inhibited growth of A549 and PC-9 cells. Compound 6l potently inhibited growth of PC-9 cells (IC50 = 0.59 μM), about 4-fold more potent than 5-FU. Further SARs studies led to the identification of compounds 6l-m, which had good growth inhibition against all the tested cancer cell lines and were much more potent than 5-FU and GSK2879552...
October 14, 2016: European Journal of Medicinal Chemistry
Nina M Patrick, Chanel A Griggs, Ali L Icenogle, Maryam M Gilpatrick, Vineela Kadiyala, Rosa Jaime-Frias, Catharine L Smith
Small molecule inhibitors of lysine deacetylases (KDACs) are approved for clinical use in treatment of several diseases. Nuclear receptors, such as the glucocorticoid receptor (GR) use lysine acetyltransferases (KATs or HATs) and KDACs to regulate transcription through acetylation and deacetylation of protein targets such as histones. Previously we have shown that KDAC1 activity facilitates GR-activated transcription at about half of all cellular target genes. In the current study we examine the role of Class I KDACs in glucocorticoid-mediated repression of gene expression...
September 16, 2016: Journal of Steroid Biochemistry and Molecular Biology
Yan Chen, Jeesun Kim, Ruipeng Zhang, Xiaoqin Yang, Yong Zhang, Jianwu Fang, Zhui Chen, Lin Teng, Xiaowei Chen, Hui Ge, Peter Atadja, En Li, Taiping Chen, Wei Qi
Adipose tissue plays important roles in animals. White fat stores energy in lipids, while brown fat is responsible for nonshivering thermogenesis through UCP1-mediated energy dissipation. Although epigenetic mechanisms modulate differentiation in multiple lineages, the epigenetic regulation of brown adipocyte differentiation is poorly understood. By screening a collection of epigenetic compounds, we found that Lysine-Specific Demethylase 1 (LSD1) inhibitors repress brown adipocyte differentiation. RNAi-mediated Lsd1 knockdown causes a similar effect, which can be rescued by expression of wild-type but not catalytic-inactive LSD1...
October 20, 2016: Cell Chemical Biology
Valentina Speranzini, Dante Rotili, Giuseppe Ciossani, Simona Pilotto, Biagina Marrocco, Mariantonietta Forgione, Alessia Lucidi, Federico Forneris, Parinaz Mehdipour, Sameer Velankar, Antonello Mai, Andrea Mattevi
Because of its involvement in the progression of several malignant tumors, the histone lysine-specific demethylase 1 (LSD1) has become a prominent drug target in modern medicinal chemistry research. We report on the discovery of two classes of noncovalent inhibitors displaying unique structural features. The antibiotics polymyxins bind at the entrance of the substrate cleft, where their highly charged cyclic moiety interacts with a cluster of positively charged amino acids. The same site is occupied by quinazoline-based compounds, which were found to inhibit the enzyme through a most peculiar mode because they form a pile of five to seven molecules that obstruct access to the active center...
September 2016: Science Advances
Shin Miyamura, Misaho Araki, Yosuke Ota, Yukihiro Itoh, Shusuke Yasuda, Mitsuharu Masuda, Tomoyuki Taniguchi, Yoshihiro Sowa, Toshiyuki Sakai, Takayoshi Suzuki, Kenichiro Itami, Junichiro Yamaguchi
We describe the structure-activity relationship of various arylcyclopropylamines (ACPAs), which are potent LSD1 inhibitors. More than 45 ACPAs were synthesized rapidly by an unconventional method that we have recently developed, consisting of a C-H borylation and cross-coupling sequence starting from cyclopropylamine. We also generated NCD38 derivatives, which are known as LSD1 selective inhibitors, and discovered a more effective inhibitor compared to the original NCD38.
September 28, 2016: Organic & Biomolecular Chemistry
M K Kang, S Mehrazarin, N-H Park, C-Y Wang
Histone N-terminal tails of nucleosomes are the sites of complex regulation of gene expression through post-translational modifications. Among these modifications, histone methylation had long been associated with permanent gene inactivation until the discovery of Lys-specific demethylase (LSD1), which is responsible for dynamic gene regulation. There are more than 30 members of the Lys demethylase (KDM) family, and with exception of LSD1 and LSD2, all other KDMs possess the Jumonji C (JmjC) domain exhibiting demethylase activity and require unique cofactors, for example, Fe(II) and α-ketoglutarate...
August 11, 2016: Oral Diseases
Alba Maiques-Diaz, Tim Cp Somervaille
LSD1 (KDM1A; BHC110; AOF2) was the first protein reported to exhibit histone demethylase activity and has since been shown to have multiple essential roles in mammalian biology. Given its enzymatic activity and its high-level expression in many human malignancies, a significant recent focus has been the development of pharmacologic inhibitors. Here we summarize structural and biochemical knowledge of this important epigenetic regulator, with a particular emphasis on the functional and preclinical studies in oncology that have provided justification for the evaluation of tranylcypromine derivative LSD1 inhibitors in early phase clinical trials...
August 2016: Epigenomics
Mendel Roth, Zhiqiang Wang, Wen Yong Chen
Acquisition of BCR-ABL mutations underlies drug resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors, but the molecular mechanisms of mutation acquisition are poorly understood. We previously showed that lysine deacetylase sirtuin 1, SIRT1, promotes acquisition of BCR-ABL mutations in association with enhancing KU70 mediated non-homologous end joining DNA repair. In this study, we demonstrate that lysine specific demethylase 1 (LSD1) plays an opposite role to SIRT1 in regulating DNA repair and mutation acquisition...
June 30, 2016: Oncotarget
D Hayward, P A Cole
The lysine-specific demethylase (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from histone H3 at the Lys4 position. Along with histone deacetylases 1 and 2, LSD1 is involved in epigenetically silencing gene expression. LSD1 has been implicated as a potential therapeutic target in cancer and other diseases. In this chapter, we discuss several approaches to measure LSD1 demethylase activity and their relative strengths and limitations for inhibitor discovery and mechanistic characterization...
2016: Methods in Enzymology
Helai P Mohammad, Ryan G Kruger
Epigenetic machinery have become a major focus for new targeted cancer therapies. Our previous report described the discovery and biological activity of a potent, selective, orally bioavailable, irreversible inhibitor of Lysine Demethylase 1 (LSD1), GSK2879552. A proliferation screen of cell lines representing a number of tumor types indicated that small cell lung carcinoma (SCLC) was sensitive to LSD1 inhibition. The SCLC lines that undergo growth inhibition in response to GSK2879552 exhibit DNA hypomethylation of a signature set of probes suggesting this may be used as a predictive biomarker of activity...
March 2016: Molecular & Cellular Oncology
Alexander Hirschi, William J Martin, Zigmund Luka, Lioudmila V Loukachevitch, Nicholas J Reiter
Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA...
August 2016: RNA
Maria Pinkerneil, Michèle J Hoffmann, Hella Kohlhof, Wolfgang A Schulz, Günter Niegisch
BACKGROUND: Targeting of class I histone deacetylases (HDACs) exerts antineoplastic actions in various cancer types by modulation of transcription, upregulation of tumor suppressors, induction of cell cycle arrest, replication stress and promotion of apoptosis. Class I HDACs are often deregulated in urothelial cancer. 4SC-202, a novel oral benzamide type HDAC inhibitor (HDACi) specific for class I HDACs HDAC1, HDAC2 and HDAC3 and the histone demethylase LSD1, shows substantial anti-tumor activity in a broad range of cancer cell lines and xenograft tumor models...
June 2, 2016: Targeted Oncology
Ludovica Morera, Michael Lübbert, Manfred Jung
The term epigenetics is defined as heritable changes in gene expression that are not due to alterations of the DNA sequence. In the last years, it has become more and more evident that dysregulated epigenetic regulatory processes have a central role in cancer onset and progression. In contrast to DNA mutations, epigenetic modifications are reversible and, hence, suitable for pharmacological interventions. Reversible histone methylation is an important process within epigenetic regulation, and the investigation of its role in cancer has led to the identification of lysine methyltransferases and demethylases as promising targets for new anticancer drugs...
2016: Clinical Epigenetics
Christopher J Petell, Lama Alabdi, Ming He, Phillip San Miguel, Richard Rose, Humaira Gowher
Coordinated regulation of gene expression that involves activation of lineage specific genes and repression of pluripotency genes drives differentiation of embryonic stem cells (ESC). For complete repression of pluripotency genes during ESC differentiation, chromatin at their enhancers is silenced by the activity of the Lsd1-Mi2/NuRD complex. The mechanism/s that regulate DNA methylation at these enhancers are largely unknown. Here, we investigated the affect of the Lsd1-Mi2/NuRD complex on the dynamic regulatory switch that induces the local interaction of histone tails with the Dnmt3 ATRX-DNMT3-DNMT3L (ADD) domain, thus promoting DNA methylation at the enhancers of a subset of pluripotency genes...
September 19, 2016: Nucleic Acids Research
Yi-Chao Zheng, Bin Yu, Zhe-Sheng Chen, Ying Liu, Hong-Min Liu
Since the first lysine-specific demethylase (KDM), lysine-specific demethylase 1 (LSD1), was characterized in 2004, several families of KDMs have been identified. LSD1 can specifically demethylate H3K4me1/2, H3K9me1/2 as well as some nonhistone substrates. It has been demonstrated to be an oncogene as well as a drug target. Hence, tens of small-molecule LSD1 inhibitors have been designed, synthesized and applied for cancer treatment. However, the two LSD1 inhibitors that have been advanced into early phase clinical trials are trans-2-phenylcyclopropylamine (TCP) derivatives, which indicate that TCP is a druggable scaffold for LSD1 inhibitor...
May 2016: Epigenomics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"