Read by QxMD icon Read

Epigenetic regulation of chromosome

Dong-Li Zhu, Xiao-Feng Chen, Wei-Xin Hu, Shan-Shan Dong, Bing-Jie Lu, Yu Rong, Yi-Xiao Chen, Hao Chen, Hlaing Nwe Thynn, Nai-Ning Wang, Yan Guo, Tie-Lin Yang
RANKL is a key regulator involved in bone metabolism, and a drug target for osteoporosis. The clinical diagnosis and assessment of osteoporosis are mainly based on bone mineral density (BMD). Previous powerful genome-wide association studies (GWASs) have identified multiple intergenic single nucleotide polymorphisms (SNPs) located over 100 kb upstream of RANKL and 65 kb downstream of AKAP11 at 13q14.11 for osteoporosis. Whether these SNPs exert their roles on osteoporosis through RANKL is unknown. In this study, we conducted integrative analyses combining expression quantitative trait locus (eQTL), genomic chromatin interaction (Hi-C), epigenetic annotation and a series of functional assays...
March 12, 2018: Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research
Younguk Sun, Bo-Rui Chen, Aniruddha Deshpande
The importance of epigenetic dysregulation to acute myeloid leukemia (AML) pathophysiology has become increasingly apparent in recent years. Epigenetic regulators, including readers, writers, and erasers, are recurrently dysregulated by way of chromosomal translocations, somatic mutations, or genomic amplification in AML and many of these alterations are directly implicated in AML pathogenesis. Mutations in epigenetic regulators are often discovered in founder clones and persist after therapy, indicating that they may contribute to a premalignant state poised for the acquisition of cooperating mutations and frank malignancy...
2018: Frontiers in Oncology
Sarada Achyutuni, Revathy Nadhan, Satheesh Kumar Sengodan, Priya Srinivas
Chromosome 17 (Chr17) harbors crucial genes that encode proteins implicated in a variety of cancers, including some that guard cancer cells from genomic instability and others that interfere with metastasis. Included amongst the genes on chr17 that regulate biological processes fundamental to the genesis of cancer are TP53, BRCA1, CCL5, NF-1, and GRB7. As many as 50% of all human tumors and at least 30% of breast carcinomas contain p53 mutations, while 30%-40% of breast cancers have defective BRCA1. A large number of proteins regulate the expression of these cancer genes on chr17 with miRNAs, the most widely studied class of regulatory RNAs, playing a major role in epigenetically controlling the gene expression programs, thereby managing various cellular functions...
August 2017: Seminars in Oncology
Ricardo Leão, Joana Dias Apolónio, Donghyun Lee, Arnaldo Figueiredo, Uri Tabori, Pedro Castelo-Branco
BACKGROUND: Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. MAIN BODY: The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability...
March 12, 2018: Journal of Biomedical Science
Lauriane Simon, Fernando A Rabanal, Tristan Dubos, Cecilia Oliver, Damien Lauber, Axel Poulet, Alexander Vogt, Ariane Mandlbauer, Samuel Le Goff, Andreas Sommer, Hervé Duborjal, Christophe Tatout, Aline V Probst
Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure...
March 6, 2018: Nucleic Acids Research
Féaron C Cassidy, Marika Charalambous
In the 1980s, mouse nuclear transplantation experiments revealed that both male and female parental genomes are required for successful development to term ( McGrath and Solter, 1983; Surani and Barton, 1983). This non-equivalence of parental genomes is because imprinted genes are predominantly expressed from only one parental chromosome. Uniparental inheritance of these genomic regions causes paediatric growth disorders such as Beckwith-Wiedemann and Silver-Russell syndromes (reviewed in Peters, 2014). More than 100 imprinted genes have now been discovered and the functions of many of these genes have been assessed in murine models...
March 7, 2018: Journal of Experimental Biology
Marcia Manterola, Taylor M Brown, Min Young Oh, Corey Garyn, Bryan J Gonzalez, Debra J Wolgemuth
The double bromodomain and extra-terminal domain (BET) proteins are critical epigenetic readers that bind to acetylated histones in chromatin and regulate transcriptional activity and modulate changes in chromatin structure and organization. The testis-specific BET member, BRDT, is essential for the normal progression of spermatogenesis as mutations in the Brdt gene result in complete male sterility. Although BRDT is expressed in both spermatocytes and spermatids, loss of the first bromodomain of BRDT leads to severe defects in spermiogenesis without overtly compromising meiosis...
March 2018: PLoS Genetics
Katherine Leavey, Samantha L Wilson, Shannon A Bainbridge, Wendy P Robinson, Brian J Cox
Background: Preeclampsia (PE) is a heterogeneous, hypertensive disorder of pregnancy, with no robust biomarkers or effective treatments. We hypothesized that this heterogeneity is due to the existence of multiple subtypes of PE and, in support of this hypothesis, we recently identified five clusters of placentas within a large gene expression microarray dataset ( N  = 330), of which four (clusters 1, 2, 3, and 5) contained a substantial number of PE samples. However, while transcriptional analysis of placentas can subtype patients, we propose that the addition of epigenetic information could discern gene regulatory mechanisms behind the distinct PE pathologies, as well as identify clinically useful potential biomarkers...
2018: Clinical Epigenetics
Chen Sun, Chang Lu
Detecting three-dimensional (3D) genome organization in the form of physical interactions between various genomic loci is of great importance for understanding transcriptional regulations and cellular fate. Chromosome Conformation Capture (3C) method is the gold standard for examining chromatin organization, but usually requires a large number of cells (>107 ). This hinders studies of scarce tissue samples from animals and patients using the method. Here we developed a microfluidics-based approach for examining chromosome conformation by 3C technology...
March 2, 2018: Analytical Chemistry
Namitha Mohandas, Sebastian Bass-Stringer, Jovana Maksimovic, Kylie Crompton, Yuk J Loke, Janet Walstab, Susan M Reid, David J Amor, Dinah Reddihough, Jeffrey M Craig
Background: Cerebral palsy (CP) is a clinical description for a group of motor disorders that are heterogeneous with respect to causes, symptoms and severity. A diagnosis of CP cannot usually be made at birth and in some cases may be delayed until 2-3 years of age. This limits opportunities for early intervention that could otherwise improve long-term outcomes. CP has been recorded in monozygotic twins discordant for the disorder, indicating a potential role of non-genetic factors such as intrauterine infection, hypoxia-ischaemia, haemorrhage and thrombosis...
2018: Clinical Epigenetics
Doralina do Amaral Rabello, Vivian D'Afonseca da Silva Ferreira, Maria Gabriela Berzoti-Coelho, Sandra Mara Burin, Cíntia Leticia Magro, Maira da Costa Cacemiro, Belinda Pinto Simões, Felipe Saldanha-Araujo, Fabíola Attié de Castro, Fabio Pittella-Silva
Background: Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm whose pathogenesis is linked to the Philadelphia chromosome presence that generates the BCR - ABL 1 fusion oncogene. Tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM) dramatically improved the treatment efficiency and survival of CML patients by targeting BCR-ABL tyrosine kinase. The disease shows three distinct clinical-laboratory stages: chronic phase, accelerated phase and blast crisis...
2018: Cancer Cell International
Ana García Del Arco, Bruce A Edgar, Sylvia Erhardt
Stem cells of the Drosophila midgut (ISCs) are the only mitotically dividing cells of the epithelium and, therefore, presumably the only epithelial cells that require functional kinetochores for microtubule spindle attachment during mitosis. The histone variant CENP-A marks centromeric chromatin as the site of kinetochore formation and spindle attachment during mitotic chromosome segregation. Here, we show that centromeric proteins distribute asymmetrically during ISC division. Whereas newly synthesized CENP-A is enriched in differentiating progeny, CENP-C is undetectable in these cells...
February 20, 2018: Cell Reports
Simone Fouché, Clémence Plissonneau, Daniel Croll
Plant pathogenic fungi and oomycetes are major risks to food security due to their evolutionary success in overcoming plant defences. Pathogens produce effectors to interfere with host defences and metabolism. These effectors are often encoded in rapidly evolving compartments of the genome. We review how effector genes emerged and were lost in pathogen genomes drawing on the links between effector evolution and chromosomal rearrangements. Some new effectors entered pathogen genomes via horizontal transfer or introgression...
February 15, 2018: Current Opinion in Microbiology
Ziyao Zhang, Rebecca Ursin, Samiksha Mahapatra, G Ian Gallicano
Although it is well understood that genetic mutations, chromosomal abnormalities, and epigenetic miscues can cause congenital birth defects, many defects are still labeled idiopathic, meaning their origin is not yet understood. microRNAs are quickly entering the causal fray of developmental defects. miRNAs use a 7-8 base-pair seed sequence to target a corresponding sequence on one or multiple mRNAs resulting in rapid down-regulation of translation. miRNAs can also control protein 'amounts' in cells. As a result if miRNAs are over or under expressed during development protein homeostasis can be compromised resulting in defects in the development of organ systems...
February 7, 2018: Mechanisms of Development
Yue-Xing Tu, Shi-Bing Wang, Luo-Qin Fu, Shuang-Shuang Li, Qian-Peng Guo, Yi Wu, Xiao-Zhou Mou, Xiang-Min Tong
Chronic myeloid leukemia (CML) is a myeloproliferative pathology, originating from the hematopoietic cancer stem cells (hCSCs) due to the Bcl-Abl Philadelphia chromosome transformation. However, targeting these hCSCs as an effective anti-CML strategy is relatively less explored. Ovatodiolide (Ova) is a natural diterpenoid isolate of Anisomeles indica with broad anticancer activity. In this study, we investigated the anti-hCSCs potential of Ova against CD34+/CD38-, CD34+/CD38+, and unsorted K562 cell lines using flow cytometry, western blot, RT-PCR, genomic mapping, and tumorsphere formation assays...
January 9, 2018: Oncotarget
Roberto R Capela de Matos, Moneeb A K Othman, Gerson M Ferreira, Elaine S Costa, Joana B Melo, Isabel M Carreira, Mariana T de Souza, Bruno A Lopes, Mariana Emerenciano, Marcelo G P Land, Thomas Liehr, Raul C Ribeiro, Maria Luiza M Silva
Myeloid neoplasms are a heterogeneous group of hematologic disorders with divergent patterns of cell differentiation and proliferation, as well as divergent clinical courses. Rare recurrent genetic abnormalities related to this group of cancers are associated with poor outcomes. One such abnormality is the MECOM gene rearrangement that typically occurs in cases with chromosome 7 abnormalities. MECOM encodes a transcription factor that plays an essential role in cell proliferation and maintenance and also in epigenetic regulation...
February 2018: Cancer Genetics
Dian Zhou, Wei Chen, Kai-Lin Xu
Essential thrombocythemia(ET) is one of the Ph chromosome-negative myeloproliferative neoplasms. Some studies discovered that the mutation of JAK2 V617F existed in 50%-70% patients with ET. Recently, many significant advances in researches about pathogenesis of ET, such as mutations of JAK2V617F, MPL, CALR and other related mutation; the epigenetic abnomalities in incidence of ET; the changes of bone marrow microenvironment of ET and the regulation of related cytokines were obtained. In this article, the advances of above mentioned aspects of ET are summarized...
February 2018: Zhongguo Shi Yan Xue Ye Xue za Zhi
Abbas Agaimy, William D Foulkes
The SWItch Sucrose non-fermentable (SWI/SNF) complex is a highly conserved multi-subunit complex of proteins encoded by numerous genes mapped to different chromosomal regions. The complex regulates the process of chromatin remodelling and hence plays a central role in the epigenetic regulation of gene expression, cell proliferation and differentiation. During the last three decades, the SWI/SNF complex has been increasingly recognized as a central molecular event driving the initiation and/or progression of several benign and malignant neoplasms of different anatomic origin and having diverse histomorphological appearance...
January 31, 2018: Seminars in Diagnostic Pathology
Livio Provenzi, Roberto Giorda, Monica Fumagalli, Uberto Pozzoli, Francesco Morandi, Giunia Scotto di Minico, Fabio Mosca, Renato Borgatti, Rosario Montirosso
Very preterm (VPT) infants (gestational age < 32 weeks) require long-lasting hospitalization in the Neonatal Intensive Care Unit (NICU), even in absence of severe morbidities. During NICU stay, life-saving interventions occur and include invasive and painful skin-breaking procedures (NICU-related stress), which constitute a major early adverse experience for VPT infants. Telomeres are repeat-sequence at the end of chromosomes, which shorten with age and are highly susceptible to life adversities: the exposure to early adverse experiences is associated with shorter telomere length (TL)...
January 20, 2018: Psychoneuroendocrinology
Jimmy El Hokayem, Edwin Weeber, Zafar Nawaz
Angelman syndrome (AS) is a complex genetic disorder that affects the nervous system. AS affects an estimated 1 in 12,000 to 20,000 individuals. Characteristic features of AS includes developmental delay or intellectual disability, severe speech impairment, seizures, small head size (microcephaly), and problems with movement and balance (ataxia). AS individuals usually have microdeletion of the maternal copy of 15q11.2-15q13 region of chromosome 15. The E6-associated protein (E6AP, an E3 ubiquitin protein ligase enzyme) is encoded by the gene UBE3A, which is located in this region, and it has been shown that deregulation of E6AP gives rise to AS and neuropathology of autism spectrum disorders (ASDs) (e...
January 31, 2018: Molecular Neurobiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"