Read by QxMD icon Read

Chromatin modulation

Dmitry V Burdin, Alexey A Kolobov, Chad Brocker, Alexey A Soshnev, Nikolay Samusik, Anton V Demyanov, Silke Brilloff, Natalia Jarzebska, Jens Martens-Lobenhoffer, Maren Mieth, Renke Maas, Stefan R Bornstein, Stefanie M Bode-Böger, Frank Gonzalez, Norbert Weiss, Roman N Rodionov
Elevated levels of circulating asymmetric and symmetric dimethylarginines (ADMA and SDMA) predict and potentially contribute to end organ damage in cardiovascular diseases. Alanine-glyoxylate aminotransferase 2 (AGXT2) regulates systemic levels of ADMA and SDMA, and also of beta-aminoisobutyric acid (BAIB)-a modulator of lipid metabolism. We identified a putative binding site for hepatic nuclear factor 4 α (HNF4α) in AGXT2 promoter sequence. In a luciferase reporter assay we found a 75% decrease in activity of Agxt2 core promoter after disruption of the HNF4α binding site...
October 18, 2016: Scientific Reports
Li-Ming Ma, Zi-Rui Liang, Ke-Ren Zhou, Hui Zhou, Liang-Hu Qu
27-hydroxycholesterol (27-HC), the most abundant metabolite of cholesterol, is a risk factor for breast cancer. It can increase the proliferation of breast cancer cells and promote the metastasis of breast tumours in mouse models. Myc is a critical oncoprotein overexpressed in breast cancer. However, whether 27-HC affects Myc expression has not been reported. In the current study, we aimed to investigate the effects of 27-HC on Myc and the underlying mechanisms in MCF-7 breast cancer cells. Our data demonstrated that 27-HC activated Myc via increasing its protein stability...
October 14, 2016: Biochemical and Biophysical Research Communications
Naoshi Nishida, Masatoshi Kudo
Accumulation of genetic and epigenetic alterations is a hallmark of cancer genomes, including those in hepatocellular carcinoma (HCC). Particularly, in human HCC, epigenetic changes are more frequently observed than genetic changes in a variety of cancer-related genes, suggesting a potential role for epigenetic alterations during hepatocarcinogenesis. Several environmental factors, such as inflammation, obesity, and steatosis, are reported to affect the epigenetic status in hepatocytes, which could play a role in HCC development...
2016: Digestive Diseases
Michael Saul, Petra Majdak, Samuel Perez, Matthew Reilly, Theodore Garland, Justin S Rhodes
Though exercise is critical for health, many lack the motivation to exercise, and it is unclear how motivation might be increased. To uncover the molecular underpinnings of increased motivation for exercise, we analyzed the transcriptome of the striatum in four mouse lines selectively bred for high voluntary wheel running and four non-selected control lines. The striatum was dissected and RNA was extracted and sequenced from four individuals of each line. We found multiple genes and gene systems with strong relationships to both selection and running history over the previous 6 days...
October 17, 2016: Genes, Brain, and Behavior
Mariia Lunova, Vitalii Zablotskii, Nora M Dempsey, Thibaut Devillers, Milan Jirsa, Eva Syková, Šárka Kubinová, Oleg Lunov, Alexandr Dejneka
Intracellular and extracellular mechanical forces play a crucial role during tissue growth, modulating nuclear shape and function and resulting in complex collective cell behaviour. However, the mechanistic understanding of how the orientation, shape, symmetry and homogeneity of cells are affected by environmental geometry is still lacking. Here we investigate cooperative cell behaviour and patterns under geometric constraints created by topographically patterned substrates. We show how cells cooperatively adopt their geometry, shape, positioning of the nucleus and subsequent proliferation activity...
October 14, 2016: Integrative Biology: Quantitative Biosciences From Nano to Macro
Jianing Zhong, Xianfeng Li, Wanshi Cai, Yan Wang, Shanshan Dong, Jie Yang, Jian'an Zhang, Nana Wu, Yuanyuan Li, Fengbiao Mao, Cheng Zeng, Jinyu Wu, Xingzhi Xu, Zhong Sheng Sun
The Ten Eleven Translocation 1 (TET1) protein is a DNA demethylase that regulates gene expression through altering statue of DNA methylation. However, recent studies have demonstrated that TET1 could modulate transcriptional expression independent of its DNA demethylation activity; yet, the detailed mechanisms underlying TET1's role in such transcriptional regulation remain not well understood. Here, we uncovered that Tet1 formed a chromatin complex with histone acetyltransferase Mof and scaffold protein Sin3a in mouse embryonic stem cells by integrative genomic analysis using publicly available ChIP-seq data sets and a series of in vitro biochemical studies in human cell lines...
October 12, 2016: Nucleic Acids Research
Younguk Sun, Huimin Zhang, Majid Kazemian, Joseph M Troy, Christopher Seward, Xiaochen Lu, Lisa Stubbs
Mammalian genomes contain hundreds of genes transcribed by RNA Polymerase III (Pol III), encoding noncoding RNAs and especially the tRNAs specialized to carry specific amino acids to the ribosome for protein synthesis. In addition to this well-known function, tRNAs and their genes (tDNAs) serve a variety of other critical cellular functions. For example, tRNAs and other Pol III transcripts can be cleaved to yield small RNAs with potent regulatory activities. Furthermore, from yeast to mammals, active tDNAs and related "extra-TFIIIC" (ETC) loci provide the DNA scaffolds for the most ancient known mechanism of three-dimensional chromatin architecture...
October 6, 2016: Oncotarget
Chi-Cheng Chen, Chi-Ping Huang, Teng-Fu Hsieh, Wei-Kai Chiu, Wen-Ling Chang, Chih-Rong Shyr
Interactions between infiltrating macrophages in the tumor microenvironment (TME) and tumor cells contribute to tumor progression. The potential impacts of recruited macrophages to the upper urinary tract urothelial cell carcinomas (UUTUCs) progression remain unclear. Here we found human UUTUCs might recruit more macrophages than surrounding normal urothelial cells in human clinical specimens and in in vitro co-culture experiments with UUTUC cells and macrophages. The consequences of recruiting more macrophages to UUTUCs might then enhance UUTUC cell growth, migration and invasion...
2016: American Journal of Cancer Research
Ilenia Pellarin, Laura Arnoldo, Silvia Costantini, Silvia Pegoraro, Gloria Ros, Carlotta Penzo, Gianluca Triolo, Francesca Demarchi, Riccardo Sgarra, Alessandro Vindigni, Guidalberto Manfioletti
The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways...
2016: PloS One
Valentina Damiano, Giulia Brisotto, Silvia Borgna, Alessandra di Gennaro, Michela Armellin, Tiziana Perin, Michela Guardascione, Roberta Maestro, Manuela Santarosa
Loss of expression of miR-200 family members has been implicated in cellular plasticity, a phenomenon that accounts for epithelial-to-mesenchymal transition (EMT) and stem-like features of many carcinomas and is considered a major cause of tumor aggressiveness and drug resistance. Nevertheless, the mechanisms of miR-200 downregulation in breast cancer are still largely unknown. Here we show that miR-200c expression inversely correlates with miR-200c/miR-141 locus methylation in triple-negative breast tumors (TNBC)...
September 22, 2016: Genes, Chromosomes & Cancer
Ezeogo Obaji, Teemu Haikarainen, Lari Lehtiö
Human ADP-ribosyltransferase 2 (ARTD2/PARP2) is an enzyme catalyzing a post-translational modification, ADP-ribosylation. It is one of the three DNA dependent ARTDs in the 17 member enzyme family. ADP-ribosylation catalyzed by ARTD2 is involved in the regulation of multiple cellular processes such as control of chromatin remodeling, transcription and DNA repair. Here we used a combination of biochemical and biophysical methods to elucidate the structure and function of ARTD2. The solution structures revealed the binding mode of the ARTD2 monomer and dimer to oligonucleotides that mimic damaged DNA...
October 6, 2016: Scientific Reports
Xuan Cao, Emad Moeendarbary, Philipp Isermann, Patricia M Davidson, Xiao Wang, Michelle B Chen, Anya K Burkart, Jan Lammerding, Roger D Kamm, Vivek B Shenoy
It is now evident that the cell nucleus undergoes dramatic shape changes during important cellular processes such as cell transmigration through extracellular matrix and endothelium. Recent experimental data suggest that during cell transmigration the deformability of the nucleus could be a limiting factor, and the morphological and structural alterations that the nucleus encounters can perturb genomic organization that in turn influences cellular behavior. Despite its importance, a biophysical model that connects the experimentally observed nuclear morphological changes to the underlying biophysical factors during transmigration through small constrictions is still lacking...
October 4, 2016: Biophysical Journal
Sepideh Khorasanizadeh, Fraydoon Rastinejad
Nuclear receptors (NRs) are master regulators of broad genetic programs in metazoans. These programs are regulated in part by the small-molecule ligands that bind NRs and modulate their interactions with transcriptional coregulatory factors. X-ray crystallography is now delivering more complete pictures of how the multi-domain architectures of NR homo- and heterodimers are physically arranged on their DNA elements, and how ligands and coactivator peptides act through these complexes. Complementary studies are also pointing to a variety of novel mechanisms by which NRs access their DNA response elements within chromatin...
October 5, 2016: Endocrinology
Christopher G Bell
Epigenomic analysis gives a molecular insight into cell-specific genomic activity. It provides a detailed functional plan to dissect an organism, tissue by tissue. Therefore comparative epigenomics may increase understanding of human-acquired traits, by revealing regulatory changes in systems such as the neurological, musculoskeletal, and immunological. Enhancer loci evolve fast by hijacking elements from other tissues or rewiring and amplifying existing units for human-specific function. Promoters by contrast often require a CpG dense genetic infrastructure...
October 1, 2016: Genomics
Prem Prakash Kushwaha, Krishna Chaitanya Rapalli, Shashank Kumar
DNA replicates in a timely manner with each cell division. Multiple proteins and factors are involved in the initiation of DNA replication including a dynamic interaction between Cdc10-dependent transcript (Cdt1) and Geminin (GMNN). A conformational change between GMNN-Cdt1 heterotrimer and heterohexamer complex is responsible for licensing or inhibition of the DNA replication. This molecular switch ensures a faithful DNA replication during each S phase of cell cycle. GMNN inhibits Cdt1-mediated minichromosome maintenance helicases (MCM) loading onto the chromatin-bound origin recognition complex (ORC) which results in the inhibition of pre-replication complex assembly...
October 1, 2016: Biochimie
Barry M Zee, Amy B Dibona, Artyom A Alekseyenko, Christopher A French, Mitzi I Kuroda
Defects in chromatin proteins frequently manifest in diseases. A striking case of a chromatin-centric disease is NUT-midline carcinoma (NMC), which is characterized by expression of NUT as a fusion partner most frequently with BRD4. ChIP-sequencing studies from NMC patients revealed that BRD4-NUT (B4N) covers large genomic regions and elevates transcription within these domains. To investigate how B4N modulates chromatin, we performed affinity purification of B4N when ectopically expressed in 293-TREx cells and quantified the associated histone posttranslational modifications (PTM) using proteomics...
2016: PloS One
Yuhua Wang, Xueyi Xue, Jian-Kang Zhu, Juan Dong
DNA methylation and histone modifications interplay to modulate gene expression in biological organisms. The histone demethylase IBM1 suppresses DNA methylation and gene silencing, primarily by targeting genic regions in the Arabidopsis genome. The chromatin regulator EMD2 is also required for prevention of genic DNA methylation because it maintains IBM1 expression by promoting IBM1 mRNA distal polyadenylation. Loss-of-function ibm1 and edm2 mutant plants display a wide range of developmental defects, but little is known about what developmentally important genes are regulated by IBM1 and EDM2...
October 3, 2016: Development
Arunava Bandyopadhaya, Amy Tsurumi, Damien Maura, Kate L Jeffrey, Laurence G Rahme
The mechanisms by which pathogens evade elimination without affecting host fitness are not well understood. For the pathogen Pseudomonas aeruginosa, this evasion appears to be triggered by excretion of the quorum-sensing molecule 2-aminoacetophenone, which dampens host immune responses and modulates host metabolism, thereby enabling the bacteria to persist at a high burden level. Here, we examined how 2-aminoacetophenone trains host tissues to become tolerant to a high bacterial burden, without compromising host fitness...
October 3, 2016: Nature Microbiology
Jeannette Abplanalp, Michael O Hottiger
ADP-ribosylation is an evolutionarily conserved complex posttranslational modification that alters protein function and/or interaction. Intracellularly, it is mainly catalyzed by diphtheria toxin-like ADP-ribosyltransferases (ARTDs), which attach one or several ADP-ribose residues onto target proteins. Several specific mono- and poly-ADP-ribosylation binding modules exist; hydrolases reverse the modification. The best-characterized ARTD family member, ARTD1, regulates various DNA-associated processes. Here, we focus on the role of ARTD1-mediated chromatin ADP-ribosylation in development, differentiation, and pluripotency, and the recent development of new methodologies that will enable more insight into these processes...
September 28, 2016: Seminars in Cell & Developmental Biology
M Hamza, S Halayem, R Mrad, S Bourgou, F Charfi, A Belhadj
BACKGROUND: The etiology of autism spectrum disorders (ASD) is complex and multifactorial, and the roles of genetic and environmental factors in its emergence have been well documented. Current research tends to indicate that these two factors act in a synergistic manner. The processes underlying this interaction are still poorly known, but epigenetic modifications could be the mediator in the gene/environment interface. The epigenetic mechanisms have been implicated in susceptibility to stress and also in the pathogenesis of psychiatric disorders including depression and schizophrenia...
September 27, 2016: L'Encéphale
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"