keyword
MENU ▼
Read by QxMD icon Read
search

Synaptic transmission

keyword
https://www.readbyqxmd.com/read/28538174/schizophrenia-related-microdeletion-impairs-emotional-memory-through-microrna-dependent-disruption-of-thalamic-inputs-to-the-amygdala
#1
Tae-Yeon Eom, Ildar T Bayazitov, Kara Anderson, Jing Yu, Stanislav S Zakharenko
Individuals with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing psychiatric diseases such as schizophrenia. Individuals with 22q11DS and schizophrenia are impaired in emotional memory, anticipating, recalling, and assigning a correct context to emotions. The neuronal circuits responsible for these emotional memory deficits are unknown. Here, we show that 22q11DS mouse models have disrupted synaptic transmission at thalamic inputs to the lateral amygdala (thalamo-LA projections). This synaptic deficit is caused by haploinsufficiency of the 22q11DS gene Dgcr8, which is involved in microRNA processing, and is mediated by the increased dopamine receptor Drd2 levels in the thalamus and by reduced probability of glutamate release from thalamic inputs...
May 23, 2017: Cell Reports
https://www.readbyqxmd.com/read/28533206/myostatin-like-proteins-regulate-synaptic-function-and-neuronal-morphology
#2
Hrvoje Augustin, Kieran McGourty, Joern R Steinert, Helena M Cochemé, Jennifer Adcott, Melissa Cabecinha, Alec Vincent, Els F Halff, Josef T Kittler, Emmanuel Boucrot, Linda Partridge
Growth factors of the TGF-β superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of both Myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of Myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner...
May 22, 2017: Development
https://www.readbyqxmd.com/read/28530701/flower-power-controls-the-flow-of-synaptic-transmission
#3
Dustin M Graham
No abstract text is available yet for this article.
May 22, 2017: Lab Animal
https://www.readbyqxmd.com/read/28528728/spontaneous-calcium-waves-in-the-developing-enteric-nervous-system
#4
Marlene M Hao, Annette J Bergner, Caroline S Hirst, Lincon A Stamp, Franca Casagranda, Joel C Bornstein, Werend Boesmans, Pieter Vanden Berghe, Heather M Young
The enteric nervous system (ENS) is an extensive network of neurons in the gut wall that arises from neural crest-derived cells. Like other populations of neural crest cells, it is known that enteric neural crest-derived cells (ENCCs) influence the behaviour of each other and therefore must communicate. However, little is known about how ENCCs communicate with each other. In this study, we used Ca(2+) imaging to examine communication between ENCCs in the embryonic gut, using mice where ENCCs express a genetically-encoded calcium indicator...
May 18, 2017: Developmental Biology
https://www.readbyqxmd.com/read/28526611/alcohol-induces-input-specific-aberrant-synaptic-plasticity-in-the-rat-dorsomedial-striatum
#5
Tengfei Ma, Britton Barbee, Xuehua Wang, Jun Wang
Accumulated evidence suggests that the dorsomedial striatum (DMS) of the basal ganglia plays an essential role in pathological excessive alcohol consumption. The DMS receives multiple glutamatergic inputs. However, whether and how alcohol consumption distinctly affects these excitatory afferents to the DMS remains unknown. Here, we used optogenetics to selectively activate the rat medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) inputs in DMS slices, and measured the effects of alcohol consumption on glutamatergic transmission in these corticostriatal and amygdalostriatal circuits...
May 16, 2017: Neuropharmacology
https://www.readbyqxmd.com/read/28526279/an-emerging-role-for-mitochondrial-dynamics-in-schizophrenia
#6
REVIEW
Kyle H Flippo, Stefan Strack
Abnormal brain development has long been thought to contribute to the pathophysiology of schizophrenia. Impaired dendritic arborization, synaptogenesis, and long term potentiation and memory have been demonstrated in animal models of schizophrenia. In addition to aberrant nervous system development, altered brain metabolism and mitochondrial function has long been observed in schizophrenic patients. Single nucleotide polymorphisms in the mitochondrial genome as well as impaired mitochondrial function have both been associated with increased risk for developing schizophrenia...
May 16, 2017: Schizophrenia Research
https://www.readbyqxmd.com/read/28521778/cortical-kainate-receptors-and-behavioral-anxiety
#7
REVIEW
Min Zhuo
The study of glutamatergic synapses mainly focuses on the memory-related hippocampus. Recent studies in the cortical areas such as the anterior cingulate cortex (ACC) show that excitatory synapses can undergo long-term plastic changes in adult animals. Long-term potentiation (LTP) of cortical synapses may play important roles in chronic pain and anxiety. In addition to NMDA and AMPA receptors, kainate (KA) receptors have been found to play roles in synaptic transmission, regulation and presynaptic forms of LTP...
May 18, 2017: Molecular Brain
https://www.readbyqxmd.com/read/28521135/synaptotagmin-7-mediated-asynchronous-release-boosts-high-fidelity-synchronous-transmission-at-a-central-synapse
#8
Fujun Luo, Thomas C Südhof
Synchronous release triggered by Ca(2+) binding to synaptotagmin-1, -2, or -9 is thought to drive fast synaptic transmission, whereas asynchronous release induced by Ca(2+) binding to synaptotagmin-7 is thought to produce delayed synaptic signaling, enabling prolonged synaptic computations. However, it is unknown whether synaptotagmin-7-dependent asynchronous release performs a physiological function at fast synapses lacking a prolonged signaling mode, such as the calyx of Held synapse. Here, we show at the calyx synapse that synaptotagmin-7-dependent asynchronous release indeed does not produce a prolonged synaptic signal after a stimulus train and does not contribute to short-term plasticity, but induces a steady-state, asynchronous postsynaptic current during stimulus trains...
May 17, 2017: Neuron
https://www.readbyqxmd.com/read/28520739/timing-dependent-ltp-and-ltd-in-mouse-primary-visual-cortex-following-different-visual-deprivation-models
#9
Yatu Guo, Wei Zhang, Xia Chen, Junhong Fu, Wenbo Cheng, Desheng Song, Xiaolei Qu, Zhuo Yang, Kanxing Zhao
Visual deprivation during the critical period induces long-lasting changes in cortical circuitry by adaptively modifying neuro-transmission and synaptic connectivity at synapses. Spike timing-dependent plasticity (STDP) is considered a strong candidate for experience-dependent changes. However, the visual deprivation forms that affect timing-dependent long-term potentiation(LTP) and long-term depression(LTD) remain unclear. Here, we demonstrated the temporal window changes of tLTP and tLTD, elicited by coincidental pre- and post-synaptic firing, following different modes of 6-day visual deprivation...
2017: PloS One
https://www.readbyqxmd.com/read/28518090/flash-and-freeze-a-novel-technique-to-capture-membrane-dynamics-with-electron-microscopy
#10
Shuo Li, Sumana Raychaudhuri, Shigeki Watanabe
Cells constantly change their membrane architecture and protein distribution, but it is extremely difficult to visualize these events at a temporal and spatial resolution on the order of ms and nm, respectively. We have developed a time-resolved electron microscopy technique, "flash-and-freeze," that induces cellular events with optogenetics and visualizes the resulting membrane dynamics by freezing cells at defined time points after stimulation. To demonstrate this technique, we expressed channelrhodopsin, a light-sensitive cation channel, in mouse hippocampal neurons...
May 1, 2017: Journal of Visualized Experiments: JoVE
https://www.readbyqxmd.com/read/28515682/nitric-oxide-synthase-inhibitor-attenuates-the-effects-of-repeated-restraint-stress-on-synaptic-transmission-in-the-paraventricular-nucleus-of-the-rat-hypothalamus
#11
Magdalena Kusek, Anna Tokarska, Marcin Siwiec, Anna Gadek-Michalska, Bernadeta Szewczyk, Grzegorz Hess, Krzysztof Tokarski
Corticotropin-releasing hormone (CRH)-synthesizing parvocellular neuroendocrine cells (PNCs) of the hypothalamic paraventricular nucleus (PVN) play a key role in the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Several studies have demonstrated that synaptic inputs to these cells may undergo stress-related enhancement but, on the other hand, it has been reported that exposition to the same stressor for prolonged time periods may induce a progressive reduction in the response of the HPA axis to homotypic stressors...
2017: Frontiers in Cellular Neuroscience
https://www.readbyqxmd.com/read/28515678/soluble-ectodomain-of-neuroligin-1-decreases-synaptic-activity-by-activating-metabotropic-glutamate-receptor-2
#12
Michelle D Gjørlund, Eva M M Carlsen, Andreas B Kønig, Oksana Dmytrieva, Anders V Petersen, Jacob Jacobsen, Vladimir Berezin, Jean-François Perrier, Sylwia Owczarek
Synaptic cell adhesion molecules represent important targets for neuronal activity-dependent proteolysis. Postsynaptic neuroligins (NLs) form trans-synaptic complexes with presynaptic neurexins (NXs). Both NXs and NLs are cleaved from the cell surface by metalloproteases in an activity-dependent manner, releasing a soluble extracellular fragment and membrane-tethered C-terminal fragment. The cleavage of NL1 depresses synaptic transmission, but the mechanism by which this occurs is unknown. Metabotropic glutamate receptor 2 (mGluR2) are located primarily at the periphery of presynaptic terminals, where they inhibit the formation of cyclic adenosine monophosphate (cAMP) and consequently suppress the release of glutamate and decrease synaptic transmission...
2017: Frontiers in Molecular Neuroscience
https://www.readbyqxmd.com/read/28513609/application-of-rare-variant-transmission-disequilibrium-tests-to-epileptic-encephalopathy-trio-sequence-data
#13
(no author information available yet)
The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox-Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient-parent trios that were generally prescreened for rare metabolic disorders...
May 17, 2017: European Journal of Human Genetics: EJHG
https://www.readbyqxmd.com/read/28511127/neurophysiology-of-synaptic-functioning-in-multiple-sclerosis
#14
REVIEW
Mario Stampanoni Bassi, Francesco Mori, Fabio Buttari, Girolama A Marfia, Andrea Sancesario, Diego Centonze, Ennio Iezzi
Multiple sclerosis (MS) is an inflammatory immune-mediate disorder of the central nervous system (CNS), primarily affecting the myelin sheath and followed by neurodegeneration. Synaptic alterations are emerging as critical determinants of early neurodegeneration in MS. Inflammation-induced alterations of synaptic transmission and plasticity have been investigated in vitro and also in human MS using transcranial magnetic stimulation (TMS) techniques. Specific inflammatory cytokines alter glutamatergic and GABAergic transmission, resulting in synaptic hyperexcitability...
April 24, 2017: Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology
https://www.readbyqxmd.com/read/28507320/the-microbiome-regulates-amygdala-dependent-fear-recall
#15
A E Hoban, R M Stilling, G Moloney, F Shanahan, T G Dinan, G Clarke, J F Cryan
The amygdala is a key brain region that is critically involved in the processing and expression of anxiety and fear-related signals. In parallel, a growing number of preclinical and human studies have implicated the microbiome-gut-brain in regulating anxiety and stress-related responses. However, the role of the microbiome in fear-related behaviours is unclear. To this end we investigated the importance of the host microbiome on amygdala-dependent behavioural readouts using the cued fear conditioning paradigm...
May 16, 2017: Molecular Psychiatry
https://www.readbyqxmd.com/read/28506554/selective-dopamine-receptor-4-activation-mediates-the-hippocampal-neuronal-calcium-response-via-ip3-and-ryanodine-receptors
#16
Ya-Li Wang, Jian-Gang Wang, Fang-Li Guo, Xia-Huan Gao, Dan-Dan Zhao, Lin Zhang, Jian-Zhi Wang, Cheng-Biao Lu
Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD)...
May 12, 2017: Brain Research
https://www.readbyqxmd.com/read/28505527/amino-acid-and-acetylcholine-chemistry-in-the-central-auditory-system-of-young-middle-aged-and-old-rats
#17
Donald A Godfrey, Kejian Chen, Thomas R O'Toole, Abdurrahman I A A Mustapha
Older adults generally experience difficulties with hearing. Age-related changes in the chemistry of central auditory regions, especially the chemistry underlying synaptic transmission between neurons, may be of particular relevance for hearing changes. In this study, we used quantitative microchemical methods to map concentrations of amino acids, including the major neurotransmitters of the brain, in all the major central auditory structures of young (6 months), middle-aged (22 months), and old (33 months old) Fischer 344 x Brown Norway rats...
May 4, 2017: Hearing Research
https://www.readbyqxmd.com/read/28504679/generation-of-pure-gabaergic-neurons-by-transcription-factor-programming
#18
Nan Yang, Soham Chanda, Samuele Marro, Yi-Han Ng, Justyna A Janas, Daniel Haag, Cheen Euong Ang, Yunshuo Tang, Quetzal Flores, Moritz Mall, Orly Wapinski, Mavis Li, Henrik Ahlenius, John L Rubenstein, Howard Y Chang, Arturo Alvarez Buylla, Thomas C Südhof, Marius Wernig
Approaches to differentiating pluripotent stem cells (PSCs) into neurons currently face two major challenges-(i) generated cells are immature, with limited functional properties; and (ii) cultures exhibit heterogeneous neuronal subtypes and maturation stages. Using lineage-determining transcription factors, we previously developed a single-step method to generate glutamatergic neurons from human PSCs. Here, we show that transient expression of the transcription factors Ascl1 and Dlx2 (AD) induces the generation of exclusively GABAergic neurons from human PSCs with a high degree of synaptic maturation...
May 15, 2017: Nature Methods
https://www.readbyqxmd.com/read/28504671/reduced-sensory-synaptic-excitation-impairs-motor-neuron-function-via-kv2-1-in-spinal-muscular-atrophy
#19
Emily V Fletcher, Christian M Simon, John G Pagiazitis, Joshua I Chalif, Aleksandra Vukojicic, Estelle Drobac, Xiaojian Wang, George Z Mentis
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2...
May 15, 2017: Nature Neuroscience
https://www.readbyqxmd.com/read/28501494/focused-microwave-irradiation-assisted-immunohistochemistry-to-study-effects-of-ketamine-on-phospho-erk-expression-in-the-mouse-brain
#20
Alda Fernandes, Yu-Wen Li
Ketamine produces rapid and long-lasting antidepressant effects in depressive patients. Preclinical studies demonstrate that ketamine stimulates AMPA receptor transmission and activates BDNF/TrkB-Akt/ERK-mTOR signaling cascades, leading to a sustained increase in synaptic protein synthesis and strengthening of synaptic plasticity, a potential mechanism underlying the antidepressant effects. The purpose of this study was to develop an immunohistochemistry (IHC) assay to map the distribution of extracellular signal-regulated kinase (ERK) phosphorylation in the mouse brain in response to systemic ketamine treatment...
May 10, 2017: Brain Research
keyword
keyword
32381
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"