Read by QxMD icon Read

Transcription modification

Demin Cai, Mengjie Yuan, Haoyu Liu, Shifeng Pan, Wenqiang Ma, Jian Hong, Ruqian Zhao
Betaine serves as an animal and human nutrient which has been heavily investigated in glucose and lipid metabolic regulation, yet the underlying mechanisms are still elusive. In this study, feeding sows with betaine-supplemented diets during pregnancy and lactation increased cholesterol content and low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI) gene expression, but decreasing bile acids content and cholesterol-7a-hydroxylase (CYP7a1) expression in the liver of weaning piglets...
October 18, 2016: Nutrients
Inderjeet Kaur, Mohammad Zeeshan, Ekta Saini, Abhinav Kaushik, Asif Mohmmed, Dinesh Gupta, Pawan Malhotra
Post-transcriptional and post-translational modifications play a major role in Plasmodium life cycle regulation. Lysine methylation of histone proteins is well documented in several organisms, however in recent years lysine methylation of proteins outside histone code is emerging out as an important post-translational modification (PTM). In the present study we have performed global analysis of lysine methylation of proteins in asexual blood stages of Plasmodium falciparum development. We immunoprecipitated stage specific Plasmodium lysates using anti-methyl lysine specific antibodies that immunostained the asexual blood stage parasites...
October 20, 2016: Scientific Reports
Fiorella Casamenti, Massimo Stefani
Clinical trials and population studies indicate the healthy virtues of the Mediterranean diet and its main lipid component, extra-virgin olive oil (EVOO). Olive leaves and EVOO contain many phenolics effective against several aging and lifestyle-related diseases, including neurodegeneration, both in animal models and in humans. Recent research has shown that such protection stems from several effects, including (i.) the interference with the aggregation of peptides/proteins found in amyloid diseases, particularly in Alzheimer's and Parkinson's diseases; (ii...
October 20, 2016: Expert Review of Neurotherapeutics
Adil El Taghdouini, Leo A van Grunsven
Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i...
October 20, 2016: Expert Review of Gastroenterology & Hepatology
Sophia Pinz, Anne Rascle
Transcriptional activation by STAT5 is repressed by deacetylase inhibitors. Investigating the role of deacetylases (HDACs) in STAT5-mediated transcription implies the analysis of molecular events taking place at the chromatin level. We describe here two alternative methods of chromatin immunoprecipitation that allow the characterization of chromatin modifications ensuing STAT5 activation and its inhibition by deacetylase inhibitors, in particular changes in histone acetylation, in histone occupancy, and in the association/dissociation of transcription factors and other chromatin-associated factors...
2017: Methods in Molecular Biology
Brianna J Klein, Xiaoyan Wang, Gaofeng Cui, Chao Yuan, Maria Victoria Botuyan, Kevin Lin, Yue Lu, Xiaolu Wang, Yue Zhao, Christiane J Bruns, Georges Mer, Xiaobing Shi, Tatiana G Kutateladze
PHF20 is a core component of the lysine acetyltransferase complex MOF (male absent on the first)-NSL (non-specific lethal) that generates the major epigenetic mark H4K16ac and is necessary for transcriptional regulation and DNA repair. The role of PHF20 in the complex remains elusive. Here, we report on functional coupling between methylation readers in PHF20. We show that the plant homeodomain (PHD) finger of PHF20 recognizes dimethylated lysine 4 of histone H3 (H3K4me2) and represents an example of a native reader that selects for this modification...
October 18, 2016: Cell Reports
Wei-Lin Wang, David Shechter
Chromatin, primarily a complex of DNA and histone proteins, is the physiological form of the genome. Chromatin is generally repressive for transcription and other information transactions that occur on DNA. A wealth of post-translational modifications on canonical histones and histone variants encode regulatory information to recruit or repel effector proteins on chromatin, promoting and further repressing transcription and thereby form the basis of epigenetic information. During metazoan oogenesis, large quantities of histone proteins are synthesized and stored in preparation for the rapid early cell cycles of development and to elicit maternal control of chromatin assembly pathways...
2016: International Journal of Developmental Biology
Yan Wang, Jung-Mao Hsu, Ya'an Kang, Yongkun Wei, Pei-Chih Lee, Shing-Jyh Chang, Yi-Hsin Hsu, Jennifer L Hsu, Hung-Ling Wang, Wei-Chao Chang, Chia-Wei Li, Hsin-Wei Liao, Shih-Shin Chang, Weiya Xia, How-Wen Ko, Chao-Kai Chou, Jason B Fleming, Huamin Wang, Rosa F Hwang, Yue Chen, Jun Qin, Mien-Chie Hung
The oncogenic transcription factor Gli1 is a critical effector in the Hedgehog (Hh) pathway which is necessary for the development and progression of pancreatic ductal adenocarcinoma (PDAC). While TGF-β and K-Ras are known regulators of Gli1 gene transcription in this setting, it is not understood how Gli1 functional activity is regulated. Here we report the identification of Gli1 as a substrate for the protein arginine N-methyltransferase PRMT1 in PDAC. We found that PRMT1 methylates Gli1 at R597, promoting its transcriptional activity by enhancing the binding of Gli1 to its target gene promoters...
October 6, 2016: Cancer Research
Mark O'Driscoll
Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division...
October 18, 2016: Journal of Pathology
Lang Pan, Bing Zhu, Wenjing Hao, Xianlu Zeng, Spiros A Vlahopoulos, Tapas K Hazra, Muralidhar L Hegde, Zsolt Radak, Attila Bacsi, Allan R Brasier, Xueqing Ba, Istvan Boldogh
A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation...
October 18, 2016: Journal of Biological Chemistry
Nicklaus Fankhauser, Sylvain Aubry
C4 photosynthesis allows highly efficient carbon fixation that originates from tightly regulated anatomical and biochemical modifications of leaf architecture. Recent studies showed that leaf transcriptome modifications during leaf ontogeny of closely related C3 (Tarenaya hassleriana) and C4 (Gynandropsis gynandra) species within the Cleomaceae family existed but they did not identify any dedicated transcriptional networks or factors specifically driving C4 leaf ontogeny. RNAseq analysis provides a steady-state quantification of whole-cell mRNAs but does not allow any discrimination between transcriptional and post-transcriptional processes that may occur simultaneously during leaf ontogeny...
October 18, 2016: Journal of Experimental Botany
Elena Grassi, Elisa Mariella, Antonio Lembo, Ivan Molineris, Paolo Provero
BACKGROUND: Post-transcriptional regulation is a complex mechanism that plays a central role in defining multiple cellular identities starting from a common genome. Modifications in the length of 3'UTRs have been found to play an important role in this context, since alternative 3' UTRs could lead to differences for example in regulation by microRNAs and cellular localization of the transcripts thus altering their fate. RESULTS: We propose a strategy to identify the genes undergoing regulation of 3' UTR length using RNA sequencing data obtained from standard libraries, thus widely applicable to data originally obtained to perform classical differential expression analyses...
October 18, 2016: BMC Bioinformatics
Lillian Oglesby, Anthony Ananga, James Obuya, Joel Ochieng, Ernst Cebert, Violeta Tsolova
The skin color of grape berry is very important in the wine industry. The red color results from the synthesis and accumulation of anthocyanins, which is regulated by transcription factors belonging to the MYB family. The transcription factors that activate the anthocyanin biosynthetic genes have been isolated in model plants. However, the genetic basis of color variation is species-specific and its understanding is relevant in many crop species. This study reports the isolation of MybA1, and MYBCS-1 genes from muscadine grapes for the first time...
October 12, 2016: Antioxidants (Basel, Switzerland)
Stephen Harrap
Genetic discovery in blood pressure is generally referenced in relation to protein-coding genes, despite the fact that genes less than 2% of the genome. Recent exploration of the DNA sequences between genes, once called "junk" DNA, has revealed a wealth of transcripts for RNA species that do not encode protein. These non-coding RNAs (ncRNAs) have emerged as dynamic managers of the business of the genome, able to coordinate the expression of genes in time and space to achieve the complexities of normal development and growth...
September 2016: Journal of Hypertension
Jiajin Yang, Heng Ge, Caroline J Poulton, Susan L Hogan, Yichun Hu, Britta E Jones, Candace D Henderson, Elizabeth A McInnis, William F Pendergraft, J Charles Jennette, Ronald J Falk, Dominic J Ciavatta
BACKGROUND: Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease characterized by destructive vascular inflammation. Two prominent ANCA autoantigens are myeloperoxidase (MPO) and proteinase 3 (PR3), and transcription of MPO and PRTN3, the genes encoding the autoantigens, is associated with disease activity. We investigated whether patients with AAV have alterations in histone modifications, particularly those associated with transcriptional activation, at MPO and PRTN3...
2016: Clinical Epigenetics
Qingqing Liu, Tao Tao, Fang Liu, Runzhou Ni, Cuihua Lu, Aiguo Shen
As an essential post-translational modification, O-GlcNAcylation has been thought to be able to modulate various nuclear and cytoplasmic proteins and is emerging as a key regulator of multiple biological processes, such as transcription, cell growth, signal transduction, and cell motility. Recently, authoritative glycomics analyses have reported extensive crosstalk between O-GlcNAcylation and phosphorylation, which always dynamically interplay with each other and regulate signaling, transcription, and other cellular processes...
October 14, 2016: Experimental Cell Research
Eva-Maria Niehaus, Lena Studt, Katharina W von Bargen, Wiebke Kummer, Hans-Ulrich Humpf, Gunter Reuter, Bettina Tudzynski
In this study, we compared the secondary metabolite profile of Fusarium fujikuroi and the histone deacetylase mutant ΔHDA1. We identified a novel peak in ΔHDA1, which was identified as beauvericin (BEA). Going in line with a 1000-fold increased BEA production, the respective non-ribosomal peptide synthetase (NRPS)-encoding gene (BEA1), as well as two adjacent genes (BEA2-BEA3), were significantly up-regulated in ΔHDA1 compared to the wild type. A special role was revealed for the ABC transporter Bea3: deletion of the encoding gene resulted in significant up-regulation of BEA1 and BEA2 and drastically elevated product yields...
October 17, 2016: Environmental Microbiology
Anthony Holtmaat, Pico Caroni
Learning and memory are associated with the formation and modification of neuronal assemblies: populations of neurons that encode what has been learned and mediate memory retrieval upon recall. Functional studies of neuronal assemblies have progressed dramatically thanks to recent technological advances. Here we discuss how a focus on assembly formation and consolidation has provided a powerful conceptual framework to relate mechanistic studies of synaptic and circuit plasticity to behaviorally relevant aspects of learning and memory...
October 17, 2016: Nature Neuroscience
Ruiling Wen, Yingying Xiao, Yuhua Zhang, Min Yang, Yongping Lin, Jun Tang
Tubulin tyrosine ligase like 12 (TTLL12), a member of the tubulin tyrosine ligase (TTLL) family, has not been completely characterized to date. It is reported that histone methylation, tubulin modifications, mitotic duration and chromosome ploidy play crucial roles in a variety of cancers, and are related to tumorigenesis and cancer progression. A recent study showed that TTLL12 may be a pseudo-enzyme which has a SET-like domain and a TTL-like domain. In the present study, we first used 3'-rapid amplification of cDNA ends (3'-RACE) to amplify the transcripts of the TTLL12 gene from a human lung cancer cell line H1299, and unexpectedly discovered a new transcript isoform characterized with an additional 108-bp nucleotide sequence inserted at the location from 902 to 903 bases of the TTLL12 coding sequence (CDS), where it also locates between exons 5 and 6...
September 28, 2016: Oncology Reports
Madeleine Berger, Alin Mirel Puinean, Emma Randall, Christoph T Zimmer, Wellington M Silva, Pablo Bielza, Linda M Field, David Hughes, Ian Mellor, Keywan Hassani-Pak, Herbert A A Siqueira, Martin S Williamson, Chris Bass
Many genes increase coding capacity by alternate exon usage. The gene encoding the insect nicotinic acetylcholine receptor (nAChR) α6 subunit, target of the bio-insecticide spinosad, is one example of this and expands protein diversity via alternative splicing of mutually exclusive exons. Here we show that spinosad resistance in the tomato leafminer, Tuta absoluta is associated with aberrant regulation of splicing of Taα6 resulting in a novel form of insecticide resistance mediated by exon skipping. Sequencing of the α6 subunit cDNA from spinosad selected and unselected strains of T...
October 17, 2016: Molecular Ecology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"