keyword
MENU ▼
Read by QxMD icon Read
search

axon regeneration

keyword
https://www.readbyqxmd.com/read/28215880/adenovirus-vector-mediated-ex-vivo-gene-transfer-of-brain-derived-neurotrophic-factor-bdnf-tohuman-umbilical-cord-blood-derived-mesenchymal-stem-cells-ucb-mscs-promotescrush-injured-rat-sciatic-nerve-regeneration
#1
Wei-Hong Hei, Akram A Almansoori, Mi-Ae Sung, Kyung-Won Ju, Nari Seo, Sung-Ho Lee, Bong-Ju Kim, Soung-Min Kim, Jeong Won Jahng, Hong He, Jong-Ho Lee
This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF)ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells(UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group...
February 12, 2017: Neuroscience Letters
https://www.readbyqxmd.com/read/28213495/heat-shock-protein-that-facilitates-myelination-of-regenerating-axons
#2
Richard E Zigmond
No abstract text is available yet for this article.
February 17, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28213159/signal-transduction-cascades-in-axon-regeneration-insights-from-c-elegans
#3
REVIEW
Naoki Hisamoto, Kunihiro Matsumoto
Axon regeneration after nerve injury is a conserved biological process in many animals, including humans. The nematode Caenorhabditis elegans (C. elegans) has recently emerged as a genetically tractable model for studying regenerative responses in neurons. Extensive studies over several years using this organism have revealed a number of intrinsic and extrinsic signal transduction cascades that regulate axon regeneration, and these are found to be conserved from worms to humans. Further studies have demonstrated that these cascades consist of several signaling networks that ultimately merge into the c-Jun N-terminal kinase (JNK) cascade...
February 14, 2017: Current Opinion in Genetics & Development
https://www.readbyqxmd.com/read/28210970/a-suspended-carbon-fiber-culture-to-model-myelination-by-human-schwann-cells
#4
Antonio Merolli, Yong Mao, Joachim Kohn
Understanding of myelination/remyelination process is essential to guide tissue engineering for nerve regeneration. In vitro models currently used are limited to cell population studies and cannot easily identify individual cell contribution to the process. We established a novel model to study the contribution of human Schwann cells to the myelination process. The model avoids the presence of neurons in culture; Schwann cells respond solely to the biophysical properties of an artificial axon. The model uses a single carbon fiber suspended in culture media far from the floor of the well...
April 2017: Journal of Materials Science. Materials in Medicine
https://www.readbyqxmd.com/read/28203223/impaired-axonal-regeneration-in-diabetes-perspective-on-the-underlying-mechanism-from-in-vivo-and-in-vitro-experimental-studies
#5
REVIEW
Kazunori Sango, Hiroki Mizukami, Hidenori Horie, Soroku Yagihashi
Axonal regeneration after peripheral nerve injury is impaired in diabetes, but its precise mechanisms have not been elucidated. In this paper, we summarize the progress of research on altered axonal regeneration in animal models of diabetes and cultured nerve tissues exposed to hyperglycemia. Impaired nerve regeneration in animal diabetes can be attributed to dysfunction of neurons and Schwann cells, unfavorable stromal environment supportive of regenerating axons, and alterations of target tissues receptive to reinnervation...
2017: Frontiers in Endocrinology
https://www.readbyqxmd.com/read/28203046/neuroinflammation-as-fuel-for-axonal-regeneration-in-the-injured-vertebrate-central-nervous-system
#6
REVIEW
Ilse Bollaerts, Jessie Van Houcke, Lien Andries, Lies De Groef, Lieve Moons
Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided...
2017: Mediators of Inflammation
https://www.readbyqxmd.com/read/28199003/applications-of-induced-pluripotent-stem-cell-technologies-in-spinal-cord-injury
#7
REVIEW
Narihito Nagoshi, Hideyuki Okano
Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concerns with respect to clinical use. The development of induced pluripotent stem cells (iPSCs) opened a new path toward regenerative medicine for SCI. iPSCs can be generated from somatic cells by induction of transcription factors, and induced to differentiate into NPCs with characteristics of cells of the central nervous system...
February 15, 2017: Journal of Neurochemistry
https://www.readbyqxmd.com/read/28198592/bone-marrow-derived-mesenchymal-stem-cells-derived-exosomes-promote-survival-of-retinal-ganglion-cells-through-mirna-dependent-mechanisms
#8
Ben Mead, Stanislav Tomarev
The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuroprotective and axogenic effects on RGC in both of the aforementioned models. Recent evidence has shown that MSC secrete exosomes, membrane enclosed vesicles (30-100 nm) containing proteins, mRNA and miRNA which can be delivered to nearby cells...
February 15, 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28197547/neural-progenitor-cells-promote-axonal-growth-and-alter-axonal-mrna-localization-in-adult-neurons
#9
Tanuja T Merianda, Ying Jin, Ashley L Kalinski, Pabitra K Sahoo, Itzhak Fischer, Jeffery L Twiss
The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures...
January 2017: ENeuro
https://www.readbyqxmd.com/read/28197545/active-nerve-regeneration-with-failed-target-reinnervation-drives-persistent-neuropathic-pain
#10
Wenrui Xie, Judith A Strong, Jun-Ming Zhang
Peripheral nerves can regenerate and, when injured, may cause neuropathic pain. We propose that the active regeneration process plays a pivotal role in the maintenance of neuropathic pain. In one commonly used rodent neuropathic pain model, pronounced pain behaviors follow ligation and cutting of the L5 spinal nerve. We found that the injured nerve regenerates into the sciatic nerve and functionally reinnervates target tissues: the regenerated nerve conducts electrical signals, mechanical responses, and tracers between the leg/hindpaw and axotomized sensory ganglion...
January 2017: ENeuro
https://www.readbyqxmd.com/read/28197342/the-function-of-fgfr1-signalling-in-the-spinal-cord-therapeutic-approaches-using-fgfr1-ligands-after-spinal-cord-injury
#11
REVIEW
Barbara Haenzi, Lawrence D F Moon
Extensive research is ongoing that concentrates on finding therapies to enhance CNS regeneration after spinal cord injury (SCI) and to cure paralysis. This review sheds light on the role of the FGFR pathway in the injured spinal cord and discusses various therapies that use FGFR activating ligands to promote regeneration after SCI. We discuss studies that use peripheral nerve grafts or Schwann cell grafts in combination with FGF1 or FGF2 supplementation. Most of these studies show evidence that these therapies successfully enhance axon regeneration into the graft...
2017: Neural Plasticity
https://www.readbyqxmd.com/read/28197202/expression-changes-of-nerve-cell-adhesion-molecules-l1-and-semaphorin-3a-after-peripheral-nerve-injury
#12
Qian-Ru He, Meng Cong, Qing-Zhong Chen, Ya-Feng Sheng, Jian Li, Qi Zhang, Fei Ding, Yan-Pei Gong
The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A...
December 2016: Neural Regeneration Research
https://www.readbyqxmd.com/read/28197200/biodegradable-magnesium-wire-promotes-regeneration-of-compressed-sciatic-nerves
#13
Bo-Han Li, Ke Yang, Xiao Wang
Magnesium (Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire (3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A mRNA expression are increased by Mg wire in Mg model...
December 2016: Neural Regeneration Research
https://www.readbyqxmd.com/read/28197173/targeting-cell-surface-receptors-for-axon-regeneration-in-the-central-nervous-system
#14
REVIEW
Menghon Cheah, Melissa R Andrews
Axon regeneration in the CNS is largely unsuccessful due to excess inhibitory extrinsic factors within lesion sites together with an intrinsic inability of neurons to regrow following injury. Recent work demonstrates that forced expression of certain neuronal transmembrane receptors can recapitulate neuronal growth resulting in successful growth within and through inhibitory lesion environments. More specifically, neuronal expression of integrin receptors such as alpha9beta1 integrin which binds the extracellular matrix glycoprotein tenascin-C, trk receptors such as trkB which binds the neurotrophic factor BDNF, and receptor PTPĪƒ which binds chondroitin sulphate proteoglycans, have all been show to significantly enhance regeneration of injured axons...
December 2016: Neural Regeneration Research
https://www.readbyqxmd.com/read/28192527/the-efficacy-of-a-scaffold-free-bio-3d-conduit-developed-from-human-fibroblasts-on-peripheral-nerve-regeneration-in-a-rat-sciatic-nerve-model
#15
Hirofumi Yurie, Ryosuke Ikeguchi, Tomoki Aoyama, Yukitoshi Kaizawa, Junichi Tajino, Akira Ito, Souichi Ohta, Hiroki Oda, Hisataka Takeuchi, Shizuka Akieda, Manami Tsuji, Koichi Nakayama, Shuichi Matsuda
BACKGROUND: Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit. METHODS: We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer...
2017: PloS One
https://www.readbyqxmd.com/read/28191764/neural-progenitor-like-cells-induced-from-human-gingiva-derived-mesenchymal-stem-cells-regulate-myelination-of-schwann-cells-in-rat-sciatic-nerve-regeneration
#16
Qunzhou Zhang, Phuong Nguyen, Qilin Xu, Wonse Park, Sumin Lee, Akihiro Furuhashi, Anh D Le
Regeneration of peripheral nerve injury remains a major clinical challenge. Recently, mesenchymal stem cells (MSCs) have been considered as potential candidates for peripheral nerve regeneration; however, the underlying mechanisms remain elusive. Here, we show that human gingiva-derived MSCs (GMSCs) could be directly induced into multipotent NPCs (iNPCs) under minimally manipulated conditions without the introduction of exogenous genes. Using a crush-injury model of rat sciatic nerve, we demonstrate that GMSCs transplanted to the injury site could differentiate into neuronal cells, whereas iNPCs could differentiate into both neuronal and Schwann cells...
February 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28186701/bone-marrow-derived-mesenchymal-stem-cells-derived-exosomes-promote-survival-of-retinal-ganglion-cells-through-mirna-dependent-mechanisms
#17
Ben Mead, Stanislav Tomarev
The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuroprotective and axogenic effects on RGC in both of the aforementioned models. Recent evidence has shown that MSC secrete exosomes, membrane enclosed vesicles (30-100 nm) containing proteins, mRNA and miRNA which can be delivered to nearby cells...
January 26, 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28185615/clinical-study-of-neuroregen-scaffold-combined-with-human-mesenchymal-stem-cells-for-the-repair-of-chronic-complete-spinal-cord-injury
#18
Yannan Zhao, Fengwu Tang, Guang Han, Nuo Wang, Na Yin, Bing Chen, Xianfeng Jiang, Chen Yun, Wanjun Han, Changyu Zhao, Shixiang Cheng, Zhifeng Xiao, Sai Zhang, Jianwu Dai
Regeneration of damaged neurons and recovery of sensation and motor function after complete spinal cord injury (SCI) are challenging. We previously developed a collagen scaffold, NeuroRegen scaffold, to promote axonal growth along collagen fibers and inhibit glial scar formation after SCI. When functionalized with multiple biomolecules, this scaffold promoted neurological regeneration and functional recovery in animals with SCI. In this study, eight patients with chronic complete SCI were enrolled to examine the safety and efficacy of implanting NeuroRegen scaffold with human umbilical cord mesenchymal stem cells (MSCs)...
February 9, 2017: Cell Transplantation
https://www.readbyqxmd.com/read/28183657/production-and-in-vitro-evaluation-of-macroporous-cell-encapsulating-alginate-fibres-for-nerve-repair
#19
Sharon Chien-Yu Lin, Yiwei Wang, David F Wertheim, Allan G A Coombes
The prospects for successful peripheral nerve repair using fibre guides are considered to be enhanced by the use of a scaffold material, which promotes attachment and proliferation of glial cells and axonal regeneration. Macroporous alginate fibres were produced by extraction of gelatin particle porogens from wet spun fibres produced using a suspension of gelatin particles in 1.5% w/v alginate solution. Gelatin loading of the starting suspension of 40.0, 57.0, and 62.5% w/w resulted in gelatin loading of the dried alginate fibres of 16, 21, and 24% w/w respectively...
April 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28182823/how-to-direct-the-neuronal-growth-process-in-peripheral-nerve-regeneration-future-strategies-for-nanosurfaces-scaffold-and-magnetic-nanoparticles
#20
Andrea Poggetti, Pietro Battistini, Paolo Domenico Parchi, Michela Novelli, Simona Raffa, Marco Cecchini, Anna Maria Nucci, Michele Lisanti
Currently, the gold standard to repair large nerve defects is the autologous nerve graft. These solutions offer a mechanical support, adhesion substrates, and, with Schwann cells (SC), a source of neurotropic factors for axonal growth. The technical limits are the donor side damage, multiple surgical accesses, and the unavailability of large amounts of grafts. In recent years, several researchers focused their attention on the interaction between cells (nervous and glial) and physic-chemical cues that arise from the extracellular milieu...
February 7, 2017: Surgical Technology International
keyword
keyword
32017
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"