Read by QxMD icon Read


Ke Ren, Wei Zhang, Xiaoqing Chen, Yingyu Ma, Yue Dai, Yimei Fan, Yayi Hou, Ren Xiang Tan, Erguang Li
The human HSV-1 and -2 are common pathogens of human diseases. Both host and viral factors are involved in HSV lytic infection, although detailed mechanisms remain elusive. By screening a chemical library of epigenetic regulation, we identified bromodomain-containing protein 4 (BRD4) as a critical player in HSV infection. We show that treatment with pan BD domain inhibitor enhanced both HSV infection. Using JQ1 as a probe, we found that JQ1, a defined BD1 inhibitor, acts through BRD4 protein since knockdown of BRD4 expression ablated JQ1 effect on HSV infection...
October 2016: PLoS Pathogens
Carl S Rye, Nicola E A Chessum, Scott Lamont, Kurt G Pike, Paul Faulder, Julie Demeritt, Paul Kemmitt, Julie Tucker, Lorenzo Zani, Matthew D Cheeseman, Rosie Isaac, Louise Goodwin, Joanna Boros, Florence Raynaud, Angela Hayes, Alan T Henley, Emmanuel de Billy, Christopher J Lynch, Swee Y Sharp, Robert Te Poele, Lisa O' Fee, Kevin M Foote, Stephen Green, Paul Workman, Keith Jones
Heat shock factor 1 (HSF1) is a transcription factor that plays key roles in cancer, including providing a mechanism for cell survival under proteotoxic stress. Therefore, inhibition of the HSF1-stress pathway represents an exciting new opportunity in cancer treatment. We employed an unbiased phenotypic screen to discover inhibitors of the HSF1-stress pathway. Using this approach we identified an initial hit (1) based on a 4,6-pyrimidine scaffold (2.00 μM). Optimisation of cellular SAR led to an inhibitor with improved potency (25, 15 nM) in the HSF1 phenotypic assay...
August 1, 2016: MedChemComm
Ursula Schulze-Gahmen, Ignacia Echeverria, Goran Stjepanovic, Yun Bai, Huasong Lu, Dina Schneidman-Duhovny, Jennifer A Doudna, Qiang Zhou, Andrej Sali, James H Hurley
HIV-1 Tat hijacks the human superelongation complex (SEC) to promote proviral transcription. Here we report the 5.9 Å structure of HIV-1 TAR in complex with HIV-1 Tat and human AFF4, CDK9, and CycT1. The TAR central loop contacts the CycT1 Tat-TAR recognition motif (TRM) and the second Tat Zn(2+)-binding loop. Hydrogen-deuterium exchange (HDX) shows that AFF4 helix 2 is stabilized in the TAR complex despite not touching the RNA, explaining how it enhances TAR binding to the SEC 50-fold. RNA SHAPE and SAXS data were used to help model the extended (Tat Arginine-Rich Motif) ARM, which enters the TAR major groove between the bulge and the central loop...
October 12, 2016: ELife
Gianfranco Matrone, John J Mullins, Carl S Tucker, Martin A Denvir
CDK9 is a known regulator of cellular transcription, growth and proliferation. Small molecule inhibitors are currently being developed and assessed in clinical trials as anti-cancer drugs. The zebrafish embryo provides an ideal model to explore the effects of CDK9 inhibition in-vivo. This has not been adequately explored previously at the level of a whole organism. We have compared and contrasted the effects of pharmacological and molecular inhibition of CDK9 on somatic growth, apoptosis and cellular proliferation in zebrafish larvae between 0 to 120 hours post fertilisation (hpf) using flavopiridol, a selective CDK9 antagonist, and CDK9-targeting morpholino...
October 7, 2016: Cell Cycle
Rosaria Chilà, Federica Guffanti, Giovanna Damia
Phosphorylation of the RNA polymerase II C-terminal domain by cyclin-dependent kinases (CDKs) is important for productive transcription. Deregulated transcription-CDKs have been reported in different human cancers. Until recently CDK9 was the only transcription-CDK with a causative role in cancer, but evidence is cumulating of the importance of CDK12. This review summarizes the role of CDK12 in transcription and RNA processing, in maintaining genomic stability/integrity and in tumorigenesis. CDK12 mutations have been reported in many cancers and have been suggested as a cause of defective DNA repair in ovarian carcinoma...
September 14, 2016: Cancer Treatment Reviews
Muhammed Hamidur Rahaman, Malika Kumarasiri, Laychiluh Mekonnen, Mingfeng Yu, Sarah Diab, Hugo Albrecht, Robert Milne, Shudong Wang
Cyclin dependent kinase 9 (CDK9) is a key transcriptional regulator and a lucrative target for cancer treatment. Targeting CDK9 can effectively confine the hyperactivity of androgen receptor and the constitutive expression of anti-apoptotic proteins; both being main causes of prostate cancer development and progression. In castrate resistant prostate cancer, traditional therapies that only target AR have become obsolete due to reprograming in AR activity to make the cells independent of androgen. CDK9 inhibitors may provide a new and better therapeutic opportunity over traditional treatment options by targeting both androgen receptor activity and anti-apoptotic proteins, improving the chances of positive outcomes, especially in patients with the advanced disease...
August 31, 2016: Endocrine-related Cancer
Shao Xie, Hui Jiang, Xiao-Wen Zhai, Fan Wei, Shu-Dong Wang, Jian Ding, Yi Chen
AIM: LS-007 is a CDK inhibitor, which exhibits potent antitumor activity against chronic lymphocytic leukemia and ovarian cancer cells. In this study, we further evaluated the antitumor activity of LS-007 alone and in combination with a Bcl-2 inhibitor ABT-199 in acute leukemia (AL) cells. METHODS: Cell viability was detected using resazurin assay, and cell apoptosis was examined using Annexin V/PI double staining and flow cytometry. The inhibition of LS-007 on kinases was evaluated with the mobility shift assay or ELISA...
August 29, 2016: Acta Pharmacologica Sinica
Alexey V Danilov, Shanhu Hu, Bernardo Orr, Kristina Godek, Lisa Maria Mustachio, David Sekula, Xi Liu, Masanori Kawakami, Faye M Johnson, Duane A Compton, Sarah J Freemantle, Ethan Dmitrovsky
Despite advances in targeted therapy, lung cancer remains the most common cause of cancer-related mortality in the United States. Chromosomal instability is a prominent feature in lung cancer and because it rarely occurs in normal cells, it represents a potential therapeutic target. Our prior work discovered that lung cancer cells undergo anaphase catastrophe in response to inhibition of cyclin-dependent kinase 2 (CDK2), followed by apoptosis and reduced tumor cell growth. In this study, the effects and mechanisms of the multi-CDK inhibitor dinaciclib on lung cancer cells were investigated...
August 22, 2016: Molecular Cancer Therapeutics
Tomohisa Tanaka, Kaori Okuyama-Dobashi, Shuko Murakami, Wenjia Chen, Toru Okamoto, Keiji Ueda, Takamitsu Hosoya, Yoshiharu Matsuura, Akihide Ryo, Yasuhito Tanaka, Masatoshi Hagiwara, Kohji Moriishi
Current therapies for hepatitis B virus (HBV) cannot completely eliminate the HBV genome because of the stable population of covalently closed circular DNA (cccDNA) and so on. FIT-039, which is a cyclin-dependent kinase (CDK) 9 inhibitor, is known to suppress the replication of several DNA viruses including HSV, HPV and human adenovirus. In this study, we investigated the antiviral effect of FIT-039 on HBV infection. HepG2 cells expressing human sodium taurocholate cotransporting polypeptide (HepG2/NTCP cells) were infected with HBV in the presence of FIT-039...
September 2016: Antiviral Research
Annelie Hellvard, Lutz Zeitlmann, Ulrich Heiser, Astrid Kehlen, André Niestroj, Hans-Ulrich Demuth, Joanna Koziel, Nicolas Delaleu, Jan Potempa, Piotr Mydel
Rheumatoid arthritis is characterised by synovial inflammation and proliferation of fibroblast-like synoviocytes. The induction of apoptosis has long been proposed as a target for proliferative autoimmune diseases, and has further been shown to act as a successful treatment of experimental models of arthritis, such as collagen-induced arthritis. Here we examined the effects of specific oral small-molecule inhibitors of the transcription regulating cyclin-dependent kinase 9 on the development and progression of collagen-induced arthritis...
2016: Scientific Reports
Reza K Oqani, Tao Lin, Jae Eun Lee, So Yeon Kim, Soo Jin Sa, Je Seok Woo, Dong Il Jin
Positive transcription elongation factor b (P-TEFb) is an RNA polymerase II kinase that phosphorylates Ser2 of the carboxyl-terminal domain and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in early developmental events. In this study, using immunocytochemical analyses, we find that the P-TEFb components, Cyclin T1, CDK9, and its T-loop phosphorylated form, are localized to nuclear speckles, as well as in nucleoli in mouse germinal vesicle oocytes...
September 2016: Genesis: the Journal of Genetics and Development
Sandeep Rajput, Nimmish Khera, Zhanfang Guo, Jeremy Hoog, Shunqiang Li, Cynthia X Ma
Cyclin-dependent kinases (CDKs) are potential cancer therapeutic targets because of their critical role in promoting cell growth. Dinaciclib is a novel CDK inhibitor currently under clinical evaluation for the treatment of advanced malignancies. In this study, we demonstrated the anti-tumor activity of dinaciclib in triple negative breast cancer (TNBC) patient derived xenograft (PDX) and cell lines in vitro and in vivo. Treatment with dinaciclib induced cell cycle arrest at G2/M phase and marked apoptosis. These changes were accompanied by reduced phosphorylation of CDK1 and retinoblastoma (Rb) protein and decreased protein levels of cyclin B1, cMYC and survivin...
July 28, 2016: Oncotarget
Jixiu Shan, Fan Zhang, Jason Sharkey, Tiffany A Tang, Michael S Kilberg
The response to amino acid (AA) limitation of the entire aminoacyl-tRNA synthetase (ARS) gene family revealed that 16/20 of the genes encoding cytoplasmic-localized enzymes are transcriptionally induced by activating transcription factor 4 (Atf4) via C/ebp-Atf-Response-Element (CARE) enhancers. In contrast, only 4/19 of the genes encoding mitochondrial-localized ARSs were weakly induced. Most of the activated genes have a functional CARE near the transcription start site (TSS), but for others the CARE is downstream...
July 28, 2016: Nucleic Acids Research
Justyna Zaborowska, Nur F Isa, Shona Murphy
Positive transcription elongation factor b (P-TEFb), which comprises cyclin-dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P-TEFb is required for productive elongation of transcription of protein-coding genes by RNA polymerase II (pol II). In addition, P-TEFb-mediated phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle...
July 2016: BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology
Justyna Zaborowska, Nur F Isa, Shona Murphy
Positive transcription elongation factor b (P-TEFb), which comprises cyclin-dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P-TEFb is required for productive elongation of transcription of protein-coding genes by RNA polymerase II (pol II). In addition, P-TEFb-mediated phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle...
April 2016: Inside the Cell
Zhenghu Chen, Zhenyu Wang, Jonathan C Pang, Yang Yu, Shayahati Bieerkehazhi, Jiaxiong Lu, Ting Hu, Yanling Zhao, Xin Xu, Hong Zhang, Joanna S Yi, Shangfeng Liu, Jianhua Yang
Neuroblastoma (NB), the most common extracranial solid tumor of childhood, is responsible for approximately 15% of cancer-related mortality in children. Aberrant activation of cyclin-dependent kinases (CDKs) has been shown to contribute to tumor cell progression in many cancers including NB. Therefore, small molecule inhibitors of CDKs comprise a strategic option in cancer therapy. Here we show that a novel multiple-CDK inhibitor, dinaciclib (SCH727965, MK-7965), exhibits potent anti-proliferative effects on a panel of NB cell lines by blocking the activity of CDK2 and CDK9...
2016: Scientific Reports
Vikas Kumar, Santosh K Guru, Shreyans K Jain, Prashant Joshi, Sumit G Gandhi, Sandip B Bharate, Shashi Bhushan, Sonali S Bharate, Ram A Vishwakarma
Rohitukine is a chromone alkaloid isolated from an Indian medicinal plant Dysoxylum binectariferum. This natural product has led to the discovery of two clinical candidates (flavopiridol and P276-00) for the treatment of cancer. Herein, for the first time we report an efficient protocol for isolation and purification of this precious natural product in a bulk-quantity from leaves (a renewable source) of D. binectariferum (>98% purity) without use of chromatography or any acid-base treatment. Despite of the fact that this scaffold has reached up to clinical stage, particularly for leukemia; however the antileukemic activity of a parent natural product has never been investigated...
August 1, 2016: Bioorganic & Medicinal Chemistry Letters
Victoria L Hatch, Marta Marin-Barba, Simon Moxon, Christopher T Ford, Nicole J Ward, Matthew L Tomlinson, Ines Desanlis, Adam E Hendry, Saartje Hontelez, Ila van Kruijsbergen, Gert Jan C Veenstra, Andrea E Münsterberg, Grant N Wheeler
Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development...
August 15, 2016: Developmental Biology
Xing Fan
Targeting glioblastoma stem cells with γ-secretase inhibitors (GSIs) disrupts the Notch pathway and has shown some benefit in both pre-clinical models and in patients during phase I/II clinical trials. However, it is largely unknown why some glioblastoma (GBM) does not respond to GSI treatment. In this issue of the JCI, Xie et al. determined that GSI-resistant brain tumor-initiating cells (BTICs) from GBM express a higher level of the gene RBPJ, which encodes a mediator of canonical Notch signaling, compared to non-BTICs...
July 1, 2016: Journal of Clinical Investigation
Qi Xie, Qiulian Wu, Leo Kim, Tyler E Miller, Brian B Liau, Stephen C Mack, Kailin Yang, Daniel C Factor, Xiaoguang Fang, Zhi Huang, Wenchao Zhou, Kareem Alazem, Xiuxing Wang, Bradley E Bernstein, Shideng Bao, Jeremy N Rich
Glioblastomas co-opt stem cell regulatory pathways to maintain brain tumor-initiating cells (BTICs), also known as cancer stem cells. NOTCH signaling has been a molecular target in BTICs, but NOTCH antagonists have demonstrated limited efficacy in clinical trials. Recombining binding protein suppressor of hairless (RBPJ) is considered a central transcriptional mediator of NOTCH activity. Here, we report that pharmacologic NOTCH inhibitors were less effective than targeting RBPJ in suppressing tumor growth. While NOTCH inhibitors decreased canonical NOTCH gene expression, RBPJ regulated a distinct profile of genes critical to BTIC stemness and cell cycle progression...
July 1, 2016: Journal of Clinical Investigation
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"