keyword
MENU ▼
Read by QxMD icon Read
search

Cardiac regeneration

keyword
https://www.readbyqxmd.com/read/28718622/graphene-sheet-induced-global-maturation-of-cardiomyocytes-derived-from-human-induced-pluripotent-stem-cells
#1
Jiaxian Wang, Chang Cui, Haiyan Nan, Yuanfang Yu, Yini Xiao, Ellen Poon, Gang Yang, Xijie Wang, Chenchen Wang, Lingsong Li, Kenneth Richard Boheler, Xu Ma, Xin Cheng, Zhenhua Ni, Minglong Chen
Human induced pluripotent stem cells (hiPSCs) can proliferate infinitely. Their ability to differentiate into cardiomyocytes provides abundant sources for disease modeling, drug screening and regenerative medicine. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) display a low degree of maturation and fetal-like properties. Current in vitro differentiation methods do not mimic the structural, mechanical, and physiological properties of the cardiogenesis niche. Recently, we present an efficient cardiac maturation platform that combines hiPSCs monolayer cardiac differentiation with graphene substrate which is a biocompatible and superconductive material...
July 18, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28715377/creation-of-cardiac-tissue-exhibiting-mechanical-integration-of-spheroids-using-3d-bioprinting
#2
Chin Siang Ong, Takuma Fukunishi, Andrew Nashed, Adriana Blazeski, Huaitao Zhang, Samantha Hardy, Deborah DiSilvestre, Luca Vricella, John Conte, Leslie Tung, Gordon Tomaselli, Narutoshi Hibino
This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials, using only cells. Cardiomyocytes, endothelial cells and fibroblasts are first isolated, counted and mixed at desired cell ratios. They are co-cultured in individual wells in ultra-low attachment 96-well plates. Within 3 days, beating spheroids form. These spheroids are then picked up by a nozzle using vacuum suction and assembled on a needle array using a 3D bioprinter. The spheroids are then allowed to fuse on the needle array...
July 2, 2017: Journal of Visualized Experiments: JoVE
https://www.readbyqxmd.com/read/28707671/cardiomyocyte-proliferation-remove-brakes-and-push-accelerators
#3
Lingjuan He, Bin Zhou
Adult mammalian hearts cannot repair by themselves after injury due to limited proliferation of cardiomyocytes; removal of cell cycle blocker and/or addition of drugs that boost proliferation of cardiomyocytes provide potential means to cardiac regeneration. Three publications that appeared recently in Nature and Cell Research now provide new hope to the treatment of heart injuries.
July 14, 2017: Cell Research
https://www.readbyqxmd.com/read/28697334/heart-regeneration-4-0-matrix-medicine
#4
Elif Eroglu, Kenneth R Chien
The heart has a markedly limited capacity for regeneration. Reporting in Nature, Bassat et al. (2017) and Morikawa et al. (2017) have uncovered a new mechanism of Yap inhibition by the dystrophin glycoprotein complex (DGC) that is released by the extracellular matrix protein Agrin in order to promote cardiac regeneration.
July 10, 2017: Developmental Cell
https://www.readbyqxmd.com/read/28690194/examining-a-role-for-pkg-i%C3%AE-oxidation-in-the-pathogenesis-of-cardiovascular-dysfunction-during-diet-induced-obesity
#5
Olena Rudyk, Philip Eaton
BACKGROUND: Protein kinase G (PKG) Iα is the end-effector kinase that mediates nitric oxide (NO)-dependent and oxidant-dependent vasorelaxation to maintain blood pressure during health. A hallmark of cardiovascular disease is attenuated NO production, which in part is caused by NO Synthase (NOS) uncoupling, which in turn increases oxidative stress because of superoxide generation. NOS uncoupling promotes PKG Iα oxidation to the interprotein disulfide state, likely mediated by superoxide-derived hydrogen peroxide, and because the NO-cyclic guanosine monophosphate (cGMP) pathway otherwise negatively regulates oxidation of the kinase to its active disulfide dimeric state...
July 6, 2017: Free Radical Biology & Medicine
https://www.readbyqxmd.com/read/28684617/ez-switch-from-ezh2-to-ezh1-histone-methylation-opens-a-window-of-cardiac-regeneration
#6
EDITORIAL
Hyun Kook, Sang-Beom Seo, Rajan Jain
No abstract text is available yet for this article.
July 7, 2017: Circulation Research
https://www.readbyqxmd.com/read/28679860/preclinical-testing-of-the-glycogen-synthase-kinase-3%C3%AE-inhibitor-tideglusib-for-rhabdomyosarcoma
#7
Narendra Bharathy, Matthew N Svalina, Teagan P Settelmeyer, Megan M Cleary, Noah E Berlow, Susan D Airhart, Sunny Xiang, James Keck, James B Hayden, Jack F Shern, Atiya Mansoor, Melvin Lathara, Ganapati Srinivasa, David M Langenau, Charles Keller
Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma. RMS often arise from myogenic precursors and displays a poorly differentiated skeletal muscle phenotype most closely resembling regenerating muscle. GSK3β is a ubiquitously expressed serine-threonine kinase capable of repressing the terminal myogenic differentiation program in cardiac and skeletal muscle. Recent unbiased chemical screening efforts have prioritized GSK3β inhibitors as inducers of myodifferentiation in RMS, suggesting efficacy as single agents in suppressing growth and promoting self-renewal in zebrafish transgenic embryonal RMS (eRMS) models in vivo...
June 16, 2017: Oncotarget
https://www.readbyqxmd.com/read/28670973/cellular-mechanisms-underlying-cardiac-engraftment-of-stem-cells
#8
Pushpinder Kanda, Darryl R Davis
Over the past decade, it has become clear that long-term engraftment of any ex vivo expanded cell product transplanted into injured myocardium is modest and all therapeutic regeneration is mediated by stimulation of endogenous repair rather than differentiation of transplanted cells into working myocardium. Given that increasing the retention of transplanted cells boosts myocardial function, focus on the fundamental mechanisms limiting retention and survival of transplanted cells may enable strategies to help to restore normal cardiac function...
July 3, 2017: Expert Opinion on Biological Therapy
https://www.readbyqxmd.com/read/28670398/microrna-1825-induces-proliferation-of-adult-cardiomyocytes-and-promotes-cardiac-regeneration-post-ischemic-injury
#9
Raghav Pandey, Sebastian Velasquez, Shazia Durrani, Min Jiang, Michelle Neiman, Jeffrey S Crocker, Joshua B Benoit, Jack Rubinstein, Arghya Paul, Rafeeq Ph Ahmed
In mammals, proliferative capacity of cardiomyocytes is lost soon after birth, while zebrafish and other lower organisms like newts are known to regenerate injured hearts even at an adult age. Here, we show that miR-1825 can induce robust proliferation of adult rat cardiomyocytes and can improve cardiac function in-vivo post myocardial infarction. Rat adult cardiomyocytes transfected with miR-1825 showed a significant increase in DNA synthesis, mitosis, cytokinesis, and an increase in cell number when compared to cel-miR-67 transfected control...
2017: American Journal of Translational Research
https://www.readbyqxmd.com/read/28667562/the-innate-immune-response-in-myocardial-infarction-repair-and-regeneration
#10
Rebecca Gentek, Guillaume Hoeffel
Following myocardial infarction (MI), resident innate immune cells such as macrophages, innate lymphoid cells, and mast cells rapidly coordinate their function to contain inflammation by removing dying cells and promoting cardiomyocyte replenishment. To sustain local tissue repair functions, hematopoietic progenitors are mobilized from the bone marrow to the spleen to generate subsequent myeloid cells such as monocytes and neutrophils, which are rapidly recruited at the site of MI. A finely tuned balance between local adaptation and recruitment controls the overall outcome of the cardiac tissue regeneration versus repair and scar formation...
2017: Advances in Experimental Medicine and Biology
https://www.readbyqxmd.com/read/28662151/bone-marrow-mesenchymal-stem-cell-derived-vascular-endothelial-growth-factor-attenuates-cardiac-apoptosis-via-regulation-of-cardiac-mirna-23a-and-mirna-92a-in-a-rat-model-of-myocardial-infarction
#11
Yi-Sun Song, Hyun-Woo Joo, In-Hwa Park, Guang-Yin Shen, Yonggu Lee, Jeong Hun Shin, Hyuck Kim, Kyung-Soo Kim
Bone marrow-mesenchymal stem cell (BM-MSC) therapy improves the recovery of cardiac function after myocardial infarction (MI); however, the underlying molecular mechanisms are not completely understood. Recent studies have shown that microRNAs (miRNAs) modulate the pathophysiology of cardiovascular diseases. Here, we investigated the mechanisms underlying the effects of BM-MSC-derived paracrine factors and cardiac miRNAs on myocardial regeneration after MI. In our study, MI was induced by permanent ligation of the left anterior descending (LAD) coronary artery...
2017: PloS One
https://www.readbyqxmd.com/read/28659386/fate-predetermination-of-cardiac-myocytes-during-zebrafish-heart-regeneration
#12
Isil Tekeli, Anna Garcia-Puig, Mario Notari, Cristina García-Pastor, Isabelle Aujard, Ludovic Jullien, Angel Raya
Adult zebrafish have the remarkable ability to regenerate their heart upon injury, a process that involves limited dedifferentiation and proliferation of spared cardiomyocytes (CMs), and migration of their progeny. During regeneration, proliferating CMs are detected throughout the myocardium, including areas distant to the injury site, but whether all of them are able to contribute to the regenerated tissue remains unknown. Here, we developed a CM-specific, photoinducible genetic labelling system, and show that CMs labelled in embryonic hearts survive and contribute to all three (primordial, trabecular and cortical) layers of the adult zebrafish heart...
June 2017: Open Biology
https://www.readbyqxmd.com/read/28655642/the-use-and-abuse-of-cre-lox-recombination-to-identify-adult-cardiomyocyte-renewal-rate-and-origin
#13
REVIEW
Iolanda Aquila, Fabiola Marino, Eleonora Cianflone, Pina Marotta, Michele Torella, Vincenzo Mollace, Ciro Indolfi, Bernardo Nadal-Ginard, Daniele Torella
The adult mammalian heart, including the human, is unable to regenerate segmental losses after myocardial infarction. This evidence has been widely and repeatedly used up-to-today to suggest that the myocardium, contrary to most adult tissues, lacks an endogenous stem cell population or more specifically a bona-fide cardiomyocyte-generating progenitor cell of biological significance. In the last 15 years, however, the field has slowly evolved from the dogma that no new cardiomyocytes were produced from shortly after birth to the present consensus that new cardiomyocytes are formed throughout lifespan...
June 24, 2017: Pharmacological Research: the Official Journal of the Italian Pharmacological Society
https://www.readbyqxmd.com/read/28650345/preexisting-endothelial-cells-mediate-cardiac-neovascularization-after-injury
#14
Lingjuan He, Xiuzhen Huang, Onur Kanisicak, Yi Li, Yue Wang, Yan Li, Wenjuan Pu, Qiaozhen Liu, Hui Zhang, Xueying Tian, Huan Zhao, Xiuxiu Liu, Shaohua Zhang, Yu Nie, Shengshou Hu, Xiang Miao, Qing-Dong Wang, Fengchao Wang, Ting Chen, Qingbo Xu, Kathy O Lui, Jeffery D Molkentin, Bin Zhou
The mechanisms that promote the generation of new coronary vasculature during cardiac homeostasis and after injury remain a fundamental and clinically important area of study in the cardiovascular field. Recently, it was reported that mesenchymal-to-endothelial transition (MEndoT) contributes to substantial numbers of coronary endothelial cells after myocardial infarction. Therefore, the MEndoT has been proposed as a paradigm mediating neovascularization and is considered a promising therapeutic target in cardiac regeneration...
June 26, 2017: Journal of Clinical Investigation
https://www.readbyqxmd.com/read/28650344/the-relationship-between-cardiac-endothelium-and-fibroblasts-it-s-complicated
#15
Ravi Karra, Agoston O Walter, Sean M Wu
Coronary revascularization is an effective means of treating ischemic heart disease; however, current therapeutic revascularization strategies are limited to large caliber vessels. Because the mammalian heart scars following cardiac injury, recent work showing that cardiac fibroblasts can transdifferentiate into new coronary endothelium raises a new and exciting approach to promoting endogenous revascularization following cardiac injury. In this issue of the JCI, He et al. report on their employment of a battery of lineage-tracing tools to address the developmental origins of fibroblasts that give rise to new endothelial cells...
June 26, 2017: Journal of Clinical Investigation
https://www.readbyqxmd.com/read/28649106/-aging-and-homeostasis-aging-control-through-cardiac-regenerative-medicine
#16
Katsuhisa Matsuura
Heart disease is one of the leading causes of death in the developed countries and various physical conditions in heart failure attribute to the impaired physical activities, which promotes aging. The principle cause of heart failure is the loss of self-renewal ability of cardiomyocytes in various injuries such as myocardial infarction. The replacement of injured tissues with the regenerated human myocardial tissues using technologies on tissue engineering and iPS cell will provide us the novel therapeutic strategy for heart failure and the related aging issues...
2017: Clinical Calcium
https://www.readbyqxmd.com/read/28646026/exosomes-promising-sacks-for-treating-ischemic-heart-disease
#17
Gui-Hao Chen, Jun Xu, Yue-Jin Yang
Ischemic heart disease(IHD) is the leading cause of death worldwide. Despite development of continuously improving therapeutic strategies, morbidity and mortality of patients with IHD remains relatively high. Exosomes are a subpopulation of vesicles that are universally recognized as major mediators in intercellular communication. Numerous preclinical studies showed that these tiny vesicles were protective in IHD, through such actions as alleviating myocardial ischemia/reperfusion injury, promoting angiogenesis, inhibiting fibrosis and facilitating cardiac regeneration...
June 23, 2017: American Journal of Physiology. Heart and Circulatory Physiology
https://www.readbyqxmd.com/read/28639375/challenges-in-regenerating-the-diabetic-heart-a-comprehensive-review
#18
REVIEW
Venkata R Satthenapalli, Regis R Lamberts, Rajesh Katare
Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies...
June 22, 2017: Stem Cells
https://www.readbyqxmd.com/read/28638482/implantable-and-biodegradable-macroporous-iron-oxide-frameworks-for-efficient-regeneration-and-repair-of-infracted-heart
#19
Wenshuo Wang, Hongyue Tao, Yun Zhao, Xiaotian Sun, Jing Tang, Cordelia Selomulya, Jia Tang, Tianchan Chen, Yang Wang, Minglei Shu, Lei Wei, Guanyu Yi, Jixue Zhou, Lai Wei, Chunsheng Wang, Biao Kong
The construction, characterization and surgical application of a multilayered iron oxide-based macroporous composite framework were reported in this study. The framework consisted of a highly porous iron oxide core, a gelatin-based hydrogel intermediary layer and a matrigel outer cover, which conferred a multitude of desirable properties including excellent biocompatibility, improved mechanical strength and controlled biodegradability. The large pore sizes and high extent of pore interconnectivity of the framework stimulated robust neovascularization and resulted in substantially better cell viability and proliferation as a result of improved transport efficiency for oxygen and nutrients...
2017: Theranostics
https://www.readbyqxmd.com/read/28636048/supramolecular-surface-functionalization-via-catechols-for-the-improvement-of-cell-material-interactions
#20
S Spaans, P P K H Fransen, B D Ippel, D F A de Bont, H M Keizer, N A M Bax, C V C Bouten, P Y W Dankers
Optimization of cell-material interactions is crucial for the success of synthetic biomaterials in guiding tissue regeneration. To do so, catechol chemistry is often used to introduce adhesiveness into biomaterials. Here, a supramolecular approach based on ureido-pyrimidinone (UPy) modified polymers is combined with catechol chemistry in order to achieve improved cellular adhesion onto supramolecular biomaterials. UPy-modified hydrophobic polymers with non-cell adhesive properties are developed that can be bioactivated via a modular approach using UPy-modified catechols...
June 21, 2017: Biomaterials Science
keyword
keyword
31832
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"