Read by QxMD icon Read

Zinc homeostasis

Girak Kim, Min Jeong Gu, Soo Ji Kim, Kwang Hyun Ko, Yoon-Chul Kye, Cheol Gyun Kim, Jae-Ho Cho, Woon-Kyu Lee, Ki-Duk Song, Hyuk Chu, Yeong-Min Park, Seung Hyun Han, Cheol-Heui Yun
γδ T cells, known to be an important source of innate IL-17 in mice, provide critical contributions to host immune responses. Development and function of γδ T cells are directed by networks of diverse transcription factors (TFs). Here, we examine the role of the zinc finger TFs, Kruppel-like factor 10 (KLF10), in the regulation of IL-17-committed CD27- γδ T (γδ27- -17) cells. We found selective augmentation of Vγ4+ γδ27- cells with higher IL-17 production in KLF10-deficient mice. Surprisingly, KLF10-deficient CD127hi Vγ4+ γδ27- -17 cells expressed higher levels of CD5 than their wild-type counterparts, with hyper-responsiveness to cytokine, but not T-cell receptor, stimuli...
2018: Frontiers in Immunology
Wen Lin, Deqiang Li
Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood...
March 13, 2018: Pediatric Cardiology
Sangyong Choi, Ya-Mei Hu, Mark E Corkins, Amy E Palmer, Amanda J Bird
Zinc is an essential trace element that is required for the function of a large number of proteins. As these zinc-binding proteins are found within the cytosol and organelles, all eukaryotes require mechanisms to ensure that zinc is delivered to organelles, even under conditions of zinc deficiency. Although many zinc transporters belonging to the Cation Diffusion Facilitator (CDF) families have well characterized roles in transporting zinc into the lumens of intracellular compartments, relatively little is known about the mechanisms that maintain organelle zinc homeostasis...
March 12, 2018: PLoS Genetics
Jeong-Min Hong, Sun-Mee Lee
AIMS: Heme oxygenase-1 (HO-1), an endogenous cytoprotective enzyme, is reported that can be localized in mitochondria under stress, contributing to preserve mitochondrial function. Mitochondrial quality control (QC) is essential to cellular health and recovery linked with redox homeostasis. Recent studies reported that phosphoglycerate mutase family member (PGAM) 5, a mitochondria-resident phosphatase, plays critical role in mitochondrial homeostasis. Therefore, we aim to investigate cytoprotective mechanisms of HO-1 in I/R-induced hepatic injury focusing on mitochondrial QC associated with PGAM5 signaling...
March 7, 2018: Life Sciences
Militiadis A Makrygiannakis, Eleftherios G Kaklamanos, Athanasios E Athanasiou
Background: As the taking of any medication may theoretically affect the complex pathways responsible for periodontal tissue homeostasis and the events leading to orthodontic tooth movement, it is considered important for the orthodontist to be able to identify prospective patients' history and patterns of pharmaceutical consumption. Objective: To systematically investigate and appraise the quality of the available evidence regarding the effect of commonly prescribed medications on the rate of orthodontic tooth movement...
March 6, 2018: European Journal of Orthodontics
Francis Mairet
Homeostasis is the capacity of living organisms to keep internal conditions regulated at a constant level, despite environmental fluctuations. Integral feedback control is known to play a key role in this behaviour. Here, I show that a feedback system involving transcriptional and post-translational regulations of the same executor protein acts as a proportional integral (PI) controller, leading to enhanced transient performances in comparison with a classical integral loop. Such a biomolecular controller-which I call a level and activity-PI controller (LA-PI)-is involved in the regulation of ammonium uptake by Escherichia coli through the transporter AmtB...
February 2018: Royal Society Open Science
Mickael Orgeur, Marvin Martens, Georgeta Leonte, Sonya Nassari, Marie-Ange Bonnin, Stefan T Börno, Bernd Timmermann, Jochen Hecht, Delphine Duprez, Sigmar Stricker
Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling revealed a set of common genes regulated by all five transcription factors, which we propose as connective tissue core expression set...
March 6, 2018: Development
Yumeng Chen, Yaling Shen, Wei Wang, Dongzhi Wei
Background: The filamentous fungus Trichoderma reesei Rut-C30 is one of the most vital fungi for the production of cellulases, which can be used for biofuel production from lignocellulose. Nevertheless, the mechanism of transmission of external stimuli and signals in modulating cellulase production in T. reesei Rut-C30 remains unclear. Calcium is a known second messenger regulating cellulase gene expression in T. reesei . Results: In this study, we found that a biologically relevant extracellular Mn2+ concentration markedly stimulates cellulase production, total protein secretion, and the intracellular Mn2+ concentration of Rut-C30, a cellulase hyper-producing strain of T...
2018: Biotechnology for Biofuels
Yukina Nishito, Taiho Kambe
Essential trace elements play pivotal roles in numerous structural and catalytic functions of proteins. Adequate intake of essential trace elements from the daily diet is indispensable to the maintenance of health, and their deficiency leads to a variety of conditions. However, excessive amounts of these trace elements may be highly toxic, and in some cases, may cause damage by the production of harmful reactive oxygen species. Homeostatic dysregulation of their metabolism increases the risk of developing diseases...
2018: Journal of Nutritional Science and Vitaminology
Svetlana Zhenilo, Igor Deyev, Ekaterina Litvinova, Nadezhda Zhigalova, Daria Kaplun, Alexey Sokolov, Alexander Mazur, Egor Prokhortchouk
Kaiso is a member of the BTB/POZ zinc finger family, which is involved in cancer progression, cell cycle control, apoptosis, and WNT signaling. Depending on promoter context, it may function as either a transcriptional repressor or activator. Previous studies found that Kaiso might be SUMOylated due to heat shock, but the biological significance of Kaiso SUMOylation is unclear. Here, we find that K42 is the only amino acid within Kaiso that is modified with SUMO. Kaiso is monoSUMOylated at lysine 42 in cell lines of kidney origin under normal physiological conditions...
February 22, 2018: Cell Death and Differentiation
Amy M Holmes, Ivan Kempson, Tyron Turnbull, David Paterson, Michael S Roberts
Zinc pyrithione is an active component incorporated in an extensive range of topically applied commercial products that are used worldwide. Despite its prevalence, no published study has investigated the penetration of zinc from the zinc pyrithione complex into human skin. Zinc is crucial for healthy skin function however an elevated concentration of labile zinc is toxic outside a narrow concentration range. Synchrotron X-ray fluorescence microscopy in conjunction with X-ray absorption near edge structure spectroscopy was used to map the deposition of zinc, quantitate the amount of zinc within the skin and to identify a change in the chemical form of zinc after application...
February 19, 2018: Toxicology and Applied Pharmacology
Bum-Ho Bin, Shintaro Hojyo, Juyeon Seo, Takafumi Hara, Teruhisa Takagishi, Kenji Mishima, Toshiyuki Fukada
The first manifestations that appear under zinc deficiency are skin defects such as dermatitis, alopecia, acne, eczema, dry, and scaling skin. Several genetic disorders including acrodermatitis enteropathica (also known as Danbolt-Closs syndrome) and Brandt's syndrome are highly related to zinc deficiency. However, the zinc-related molecular mechanisms underlying normal skin development and homeostasis, as well as the mechanism by which disturbed zinc homeostasis causes such skin disorders, are unknown. Recent genomic approaches have revealed the physiological importance of zinc transporters in skin formation and clarified their functional impairment in cutaneous pathogenesis...
February 16, 2018: Nutrients
Arjun L Khandare, Vakdevi Validandi, Naveen Boiroju
The present study aimed to determine the serum trace elements (copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg)) along with erythrocyte carbonic anhydrase (CA) activity and effect of intervention with safe drinking water for 5 years in the school children of fluorosis endemic area. For this purpose, three categories of villages were selected based on drinking water fluoride (F): Category I (control, F = 1.68 mg/L), category II (affected F = 3.77 mg/L), and category III (intervention village) where initial drinking water F was 4...
February 17, 2018: Biological Trace Element Research
Mushtak Kisko, Nadia Bouain, Alaeddine Safi, Anna Medici, Robert C Akkers, David Secco, Gilles Fouret, Gabriel Krouk, Mark Gm Aarts, Wolfgang Busch, Hatem Rouached
All living organisms require a variety of essential elements for their basic biological functions. While the homeostasis of nutrients is highly intertwined, the molecular and genetic mechanisms of these dependencies remains poorly understood. Here, we report a discovery of a molecular pathway that control phosphate (Pi) accumulation plants in Zn deficiency. Using genome-wide association studies we first identified allelic variation of the Lyso-PhosphatidylCholine (PC) AcylTransferase 1 ( LPCAT1 ) gene as the key determinant of shoot Pi accumulation under Zn deficiency...
February 17, 2018: ELife
Pauline Chabosseau, Jason Woodier, Rebecca Cheung, Guy A Rutter
Zinc homeostasis is essential for normal cellular function, and defects in this process are associated with a number of diseases including type 2 diabetes (T2D), neurological disorders and cardiovascular disease. Thus, variants in the SLC30A8 gene, encoding the vesicular/granular zinc transporter ZnT8, are associated with altered insulin release and increased T2D risk while the zinc importer ZIP12 is implicated in pulmonary hypertension. In light of these, and findings in other diseases, recent efforts have focused on the development of refined sensors for intracellular free zinc ions that can be targeted to subcellular regions including the cytosol, endoplasmic reticulum (ER), secretory granules, Golgi apparatus, nucleus and the mitochondria...
February 12, 2018: Metallomics: Integrated Biometal Science
Daisy Bourassa, Christopher M Elitt, Adam M McCallum, S Sumalekshmy, Reagan L McRae, M Thomas Morgan, Nisan Siegel, Joseph W Perry, Paul A Rosenberg, Christoph J Fahrni
Despite the significant advantages of two-photon excitation microscopy (TPEM) over traditional confocal fluorescence microscopy in live-cell imaging applications, including reduced phototoxicity and photobleaching, increased depth penetration, and minimized autofluorescence, only a few metal ion-selective fluorescent probes have been designed and optimized specifically for this technique. Building upon a donor-acceptor fluorophore architecture, we developed a membrane-permeant, Zn(II)-selective fluorescent probe, chromis-1, that exhibits a balanced two-photon cross section between its free and Zn(II)-bound form and responds with a large spectral shift suitable for emission-ratiometric imaging...
February 12, 2018: ACS Sensors
Upasana Sridharan, Preethi Ragunathan, Barbara Spellerberg, Karthe Ponnuraj
Metal binding receptors are one of the extracellular components of ATP-binding cassette transporters that are essential for regulation of metal homeostasis in bacteria. Laminin binding adhesin (Lmb) of Streptococcus agalactiae falls under this class of solute binding proteins. It binds to zinc with a high affinity. Crystal structure of Lmb solved previously by our group reveals that the zinc is tetrahedrally coordinated by three histidines and a glutamate at the interdomain cleft. Lmb contains a long disordered loop close to the metal binding site whose precise function is unknown...
February 8, 2018: Journal of Biomolecular Structure & Dynamics
Joel W Francis, Christopher J Royer, Paul D Cook
Bacillithiol is a low-molecular weight thiol produced by many gram-positive organisms, including Staphylococcus aureus and Bacillus anthracis. It is the major thiol responsible for maintaining redox homeostasis and cellular detoxification, including inactivation of the antibiotic fosfomycin. The metal-dependent bacillithiol transferase BstA is likely involved in these sorts of detoxification processes, but the exact substrates and enzyme mechanism have not been identified. Here we report the 1.34 Å resolution X-ray crystallographic structure of BstA from S...
February 8, 2018: Protein Science: a Publication of the Protein Society
Anmoldeep Randhawa, Olusola A Ogunyewo, Danish Eqbal, Mayank Gupta, Syed Shams Yazdani
Background: There is an urgent requirement for second-generation bio-based industries for economical yet efficient enzymatic cocktail to convert diverse cellulosic biomass into fermentable sugars. In our previous study, secretome of Penicillium funiculosum NCIM1228 showed high commercial potential by exhibiting high biomass hydrolyzing efficiency. To develop NCIM1228 further as an industrial workhorse, one of the major genetic interventions needed is global deregulation of cellulolytic genes to achieve higher enzyme production...
2018: Biotechnology for Biofuels
Ayako Fukunaka, Yoshio Fujitani
Zinc deficiency is a risk factor for obesity and diabetes. However, until recently, the underlying molecular mechanisms remained unclear. The breakthrough discovery that the common polymorphism in zinc transporter SLC30A8 /ZnT8 may increase susceptibility to type 2 diabetes provided novel insights into the role of zinc in diabetes. Our group and others showed that altered ZnT8 function may be involved in the pathogenesis of type 2 diabetes, indicating that the precise control of zinc homeostasis is crucial for maintaining health and preventing various diseases, including lifestyle-associated diseases...
February 6, 2018: International Journal of Molecular Sciences
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"