keyword
MENU ▼
Read by QxMD icon Read
search

Application

keyword
https://www.readbyqxmd.com/read/28532138/a-case-based-shared-teaching-approach-in-undergraduate-medical-curriculum-a-way-for-integration-in-basic-and-clinical-sciences
#1
Soheil Peiman, Azim Mirzazadeh, Maryam Alizadeh, Sara Mortaz Hejri, Mohammad-Taghi Najafi, Abbas Tafakhori, Farnoosh Larti, Besharat Rahimi, Babak Geraiely, Parichehr Pasbakhsh, Gholamreza Hassanzadeh, Fatemeh Nabavizadeh Rafsanjani, Mohammad Ansari, Seyed Farshad Allameh
To present a multiple-instructor, active-learning strategy in the undergraduate medical curriculum. This educational research is a descriptive one. Shared teaching sessions, were designed for undergraduate medical students in six organ-system based courses. Sessions that involved in-class discussions of integrated clinical cases were designed implemented and moderated by at least 3 faculties (clinicians and basic scientists). The participants in this study include the basic sciences medical students of The Tehran University of Medical Sciences...
April 2017: Acta Medica Iranica
https://www.readbyqxmd.com/read/28532125/colorimetric-humidity-sensors-based-on-electrospun-polyamide-cocl2-nanofibrous-membranes
#2
Ming-Hao You, Xu Yan, Jun Zhang, Xiao-Xiong Wang, Xiao-Xiao He, Miao Yu, Xin Ning, Yun-Ze Long
Humidity indicators based on composite polyamide 66/cobalt chloride (PA66/CoCl2) nanofibrous membranes (NFMs) were successfully fabricated by electrospinning. A series of NFMs with various weight percentage of CoCl2 to PA66 were prepared, and their humidity sensitivity based on color changing and quartz crystal microbalance (QCM) were studied. Due to the color change property of cobalt chloride, the as-spun composite NFMs show obviously macroscopic color change from blue to pink as relative humidity (RH) increasing from 12...
December 2017: Nanoscale Research Letters
https://www.readbyqxmd.com/read/28532122/mannan-endo-1-4-%C3%AE-mannosidase-from-kitasatospora-sp-isolated-in-indonesia-and-its-potential-for-production-of-mannooligosaccharides-from-mannan-polymers
#3
Nanik Rahmani, Norimasa Kashiwagi, JaeMin Lee, Satoko Niimi-Nakamura, Hana Matsumoto, Prihardi Kahar, Puspita Lisdiyanti, Yopi, Bambang Prasetya, Chiaki Ogino, Akihiko Kondo
Mannan endo-1,4-β-mannosidase (commonly known as β-mannanase) catalyzes a random cleavage of the β-D-1,4-mannopyranosyl linkage in mannan polymers. The enzyme has been utilized in biofuel production from lignocellulose biomass, as well as in production of mannooligosaccharides (MOS) for applications in feed and food industries. We aimed to obtain a β-mannanase, for such mannan polymer utilization, from actinomycetes strains isolated in Indonesia. Strains exhibiting high mannanase activity were screened, and one strain belonging to the genus Kitasatospora was selected...
December 2017: AMB Express
https://www.readbyqxmd.com/read/28532118/facile-synthesis-of-polymeric-fluorescent-organic-nanoparticles-based-on-the-self-polymerization-of-dopamine-for-biological-imaging
#4
Yingge Shi, Ruming Jiang, Meiying Liu, Lihua Fu, Guangjian Zeng, Qing Wan, Liucheng Mao, Fengjie Deng, Xiaoyong Zhang, Yen Wei
Polymeric fluorescent organic nanoparticles (polymer-FONs) have raised considerable research attention for biomedical applications owing to their advantages as compared with fluorescent inorganic nanoparticles and small organic molecules. In this study, we presented an efficient, facile and environment-friendly strategy to produce polymer-FONs, which relied on the self-polymerization of dopamine and polyethyleneimine (PEI) in rather mild conditions. To obtain the final polymer-FONs, aldehyde group-containing copolymers (named as poly(UA-co-PEGMA)) were synthesized by reversible addition-fragmentation chain-transfer polymerization using polyethylene glycol methyl ether methacrylate (PEGMA) and 1-undecen-10-al (UA) as monomers...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532116/antibacterial-mechanical-and-surface-properties-of-ag-dlc-films-prepared-by-dual-pld-for-medical-applications
#5
P Písařík, M Jelínek, J Remsa, J Mikšovský, J Zemek, K Jurek, Š Kubinová, J Lukeš, J Šepitka
Silver doped diamond-like carbon layers were deposited by dual pulsed laser deposition using two KrF excimer lasers. The concentration of Ag, determined by XPS and WDS, moved from zero to ~10at%. We found that the sp(2)/sp(3) ratio, film roughness and the number of droplets (SEM and AFM) increased with increasing silver concentration. The sp(3) content measurement (XPS) was influenced by ion cluster surface sputtering and varied from 71.0% (undoped DLC) to 36.2% (for 9.3at% Ag). Transmission was measured on the scale from 200nm to 1100nm, and decreased with increasing silver content...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532114/hypocrellin-b-and-nano-silver-loaded-polymeric-nanoparticles-enhanced-generation-of-singlet-oxygen-for-improved-photodynamic-therapy
#6
Subramanian Natesan, Venkateshwaran Krishnaswami, Chandrasekar Ponnusamy, Madi Madiyalakan, Thomas Woo, Rajaguru Palanisamy
A nanoparticulate photodynamic approach was employed with an objective to achieve enhanced production of singlet oxygen ((1)O2), for the management of posterior segment eye diseases like age related macular degeneration. The hypocrellin B (HB) loaded poly lactide-co-glycolide nanoparticle formulations were incorporated with nano silver (HBS-NPs). The optimized HBS-NPs contained 2.60±0.06mg/mL of HB and showed (i) 135.6 to 828.2nm size range, and (ii) negative zeta potential with a narrow polydispersity index...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532111/surface-biofunctionalization-of-three-dimensional-porous-poly-lactic-acid-scaffold-using-chitosan-ogp-coating-for-bone-tissue-engineering
#7
Sen Zeng, Jianhua Ye, Zhixiang Cui, Junhui Si, Qianting Wang, Xiaofeng Wang, Kaiping Peng, Wenzhe Chen
As one of the stimulators on bone formation, osteogenic growth peptide (OGP) improves both proliferation and differentiation of the bone cells in vitro and in vivo. The aim of this work was the preparation of three dimensional porous poly(lactic acid) (PLA) scaffold with high porosity from PLA-dioxane-water ternary system with the use of vacuum-assisted solvent casting, phase separation, solvent extraction and particle leaching methods. Then, by surface coating of PLA scaffold with chitosan (CS)/OGP solution, biofunctionalization of PLA scaffold had been completed for application in bone regeneration...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532109/lactoferrin-modified-graphene-oxide-iron-oxide-nanocomposite-for-glioma-targeted-drug-delivery
#8
Meng-Meng Song, Huai-Liang Xu, Jun-Xing Liang, Hui-Hui Xiang, Rui Liu, Yu-Xian Shen
Targeting delivery of drugs in a specific manner represents a potential powerful technology in gliomas. Herein, we prepared a multifunctional targeted delivery system based on graphene oxide (GO) that contains a molecular bio-targeting ligand and superparamagnetic iron oxide nanoparticles on the surface of GO for magnetic targeting. Superparamagnetic Fe3O4 nanoparticles was loaded on the surface of GO via chemical precipitation method to form GO@Fe3O4 nanocomposites. Lactoferrin (Lf), an iron-transporting serum glycoprotein that binds to receptors overexpressed at the surface of glioma cells and vascular endothelial cell of the blood brain barrier, was chosen as the targeted ligand to construct the targeted delivery system Lf@GO@Fe3O4 through EDC/NHS chemistry...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532108/assessing-stiffness-of-nanofibres-in-bacterial-cellulose-hydrogels-numerical-experimental-framework
#9
Xing Gao, Emrah Sozumert, Zhijun Shi, Guang Yang, Vadim V Silberschmidt
This work presents a numerical-experimental framework for assessment of stiffness of nanofibres in a fibrous hydrogel - bacterial cellulose (BC) hydrogel - based on a combination of in-aqua mechanical testing, microstructural analysis and finite-element (FE) modelling. Fibrous hydrogels attracted growing interest as potential replacements to some tissues. To assess their applicability, a comprehensive understanding of their mechanical response under relevant conditions is desirable; a lack of such knowledge is mainly due to changes at microscale caused by deformation that are hard to evaluate in-situ because of the dimensions of nanofibres and aqueous environment...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532105/additive-manufacturing-with-polypropylene-microfibers
#10
Jodie N Haigh, Tim R Dargaville, Paul D Dalton
The additive manufacturing of small diameter polypropylene microfibers is described, achieved using a technique termed melt electrospinning writing. Sequential fiber layering, which is important for accurate three-dimensional fabrication, was achieved with the smallest fiber diameter of 16.4±0.2μm obtained. The collector speed, temperature and melt flow rate to the nozzle were optimized for quality and minimal fiber pulsing. Of particular importance to the success of this method is appropriate heating of the collector plate, so that the electrostatically drawn filament adheres during the direct-writing process...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532104/in-situ-synthesis-and-characterization-of-hydroxyapatite-natural-rubber-composites-for-biomedical-applications
#11
T A Dick, L A Dos Santos
In this work, a biomimetic synthesis reaction for the production of hydroxyapatite (HA)/natural rubber (NR) composites is presented. HA was synthesized in the presence of solubilized NR in tetrahydrofuran (THF), which permits that negatively charged domains in proteins and lipids in NR work as nucleation sites for hydroxyapatite. The mechanical and physicochemical properties of composites containing 10, 20 and 30wt% HA were studied. NR influenced HA crystallite morphology, shape and size and was able to disperse the HA particles in THF...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532102/islet-encapsulated-implantable-composite-hollow-fiber-membrane-based-device-a-bioartificial-pancreas
#12
Rohit S Teotia, Sachin Kadam, Atul Kumar Singh, Surendra Kumar Verma, Ashutosh Bahulekar, Sujata Kanetkar, Jayesh Bellare
Islets from xeno-sources and islet like clusters derived from autologus stem cells have emerged as alternatives to cadaveric pancreas used for treatment of type 1 diabetes. However, the immuno-isolation of these islets from the host immune system suffers from the issue of biocompatibility and hypoxia. To overcome the issues of immunobarrier biocompatibility, we developed a Polysulfone (Psf)/TPGS composite hollow fiber membrane (HFM) using a hollow fiber spinning pilot plant specially developed for this purpose...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532101/sonochemical-synthesis-of-fructose-1-6-bisphosphate-dicalcium-porous-microspheres-and-their-application-in-promotion-of-osteogenic-differentiation
#13
Chao Qi, Ding Zhou, Ying-Jie Zhu, Tuan-Wei Sun, Feng Chen, Chang-Qing Zhang
Human bone mesenchymal stem cells (hBMSCs) have the ability to differentiate into bone and cartilage for clinical bone regeneration. Biomaterials with an innate ability to stimulate osteogenic differentiation of hBMSCs into bone and cartilage are considered attractive candidates for the applications in bone tissue engineering and regeneration. In this paper, we synthesized fructose 1,6-bisphosphate dicalcium (Ca2FBP) porous microspheres by the sonochemical method, and investigated the ability of Ca2FBP for the promotion of the osteogenic differentiation of hBMSCs...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532094/electrochemical-sensing-of-doxorubicin-in-unprocessed-whole-blood-cell-lysate-and-human-plasma-samples-using-thin-film-of-poly-arginine-modified-glassy-carbon-electrode
#14
Jafar Soleymani, Mohammad Hasanzadeh, Morteza Eskandani, Maryam Khoubnasabjafari, Nasrin Shadjou, Abolghasem Jouyban
A thin film of poly-arginine fabricated on glassy carbon electrode by one step electrodeposition method is applied for detection of doxorubicin hydrochloride in whole blood, cell lysate, and untreated-plasma samples. Cyclic voltammetry results indicated that the doxorubicin is oxidized via two electrons and two protons at physiological pH (pH=7.4) using poly-arginine thin film modified glassy carbon. More importantly, electrostatic repulsion takes place between the prepared polymer film-modified electrode and selected drug resulting in the signal amplification on oxidation of doxorubicin and lowering its over potential and thereby selective detection of doxorubicin in real samples...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532092/cytocompatibility-studies-of-titania-doped-calcium-borosilicate-bioactive-glasses-in-vitro
#15
Rajkumar Samudrala, Abdul Azeem P, Vasudevarao Penugurti, Bramanandam Manavathi
The present study aims to elucidate the applications of Titania (TiO2) doped calcium borosilicate glass as a biocompatible material in regenerative orthopedic applications. In this context, we have examined the bioactivity of various concentrations of TiO2 doped glasses with the help of simulated body fluid (SBF). Cytocompatibility, cell proliferation, and protein expression studies revealed the potential candidature of TiO2 doped glasses on osteoblast cell lines (MG-63). We hypothesized that TiO2 doped calcium borosilicate glasses are most cytocompatible material for bone implants...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532091/design-and-fabrication-of-carbon-fibers-with-needle-like-nano-ha-coating-to-reinforce-granular-nano-ha-composites
#16
Xudong Wang, Xueni Zhao, Li Zhang, Wanying Wang, Jing Zhang, Fuzhen He, Jianjun Yang
Carbon fibers (CFs) with needle-like nano-hydroxyapatite (nHA) coating were first used as reinforcing materials named nHA-CFs to improve the mechanical properties of pure HA. A powder mixture containing nHA-CFs and granular nano-HA (gHA) was directly sintered by hot pressing at appropriate sintering pressure and temperature. A three-phase nHA-CFs/gHA composite was designed, fabricated, and used as an artificial bone. Results show that the bending strengths of the nHA-CFs/gHA composite are approximately 41.1% and 59...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532088/mussel-inspired-surface-modification-of-titania-nanotubes-as-a-novel-drug-delivery-system
#17
Negin Khoshnood, Ali Zamanian, Abouzar Massoudi
Titania nanotubes (TNTs) have attracted considerable attention for the development of new devices for local drug delivery applications. In this study TNTs were synthesized by hydrothermal method from titania nanoparticles and then the surface of TNTs were functionalized by in situ polymerization of bioinspired polydopamine (PDA). The proposed strategies emphasized on remarkable properties of these materials and their unique combination to design local drug delivery system with advanced performance. The samples were characterized using Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FESEM), X-ray diffraction pattern (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and surface area analysis (BET)...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532084/incorporation-of-bmp-2-loaded-collagen-conjugated-bcp-granules-in-calcium-phosphate-cement-based-injectable-bone-substitutes-for-improved-bone-regeneration
#18
Gun Hee Lee, Preeti Makkar, Kallyanshis Paul, ByongTaek Lee
The objective of the present study was to incorporate surface modified porous multichannel BCP granule into CPC to enhance its in vivo biodegradation and bone tissue growth. The multichannel BCP granule (15wt%) was first coated with collagen subsequent to BMP-2 loading (ccMCG-B). It was then embedded into CPC to form CPC-ccMCG-B system. The newly developed CPC-ccMCG-B system was then examined for SEM, EDX, XRD, setting time, compressive strength, injectability, pH change, BMP-2 release, in vitro as well as in vivo studies and further compared with CPC...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532081/the-hot-deformation-behavior-and-microstructure-evolution-of-ha-mg-3zn-0-8zr-composites-for-biomedical-application
#19
Debao Liu, Yichi Liu, Yue Zhao, Y Huang, Minfang Chen
The hot deformation behavior of nano-sized hydroxylapatite (HA) reinforced Mg-3Zn-0.8Zr composites were performed by means of Gleeble-1500D thermal simulation machine in a temperature range of 523-673K and a strain rate range of 0.001-1s(-1), and the microstructure evolution during hot compression deformation were also investigated. The results show that the flow stress increases increasing strain rates at a constant temperature, and decreases with increasing deforming temperatures at a constant strain rate...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532080/antibiotic-loaded-microspheres-as-antimicrobial-delivery-systems-for-medical-applications
#20
J Szczeblinska, K Fijalkowski, J Kohn, M El Fray
In this paper, we present the preparation and antibiotic loading of polymeric microspheres, composed of copolymers derived from fatty acid/amino acid components, as new polymeric platforms for antibiotic delivery systems. New polymeric materials were used to prepare microspheres with and without immobilized model antibiotics (streptomycin, chloramphenicol and amphotericin B) by a W/O/W double-emulsion/solvent evaporation method, in which chloroform and poly(vinyl alcohol) are used as the solvent and emulsifier, respectively...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
keyword
keyword
30801
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"