Read by QxMD icon Read

Huntington disease

Nadine Griesche, Judith Schilling, Stephanie Weber, Marlena Rohm, Verena Pesch, Frank Matthes, Georg Auburger, Sybille Krauss
Expansion of CAG repeats, which code for the disease-causing polyglutamine protein, is a common feature in polyglutamine diseases. RNA-mediated mechanisms that contribute to neuropathology in polyglutamine diseases are important. RNA-toxicity describes a phenomenon by which the mutant CAG repeat RNA recruits RNA-binding proteins, thereby leading to aberrant function. For example the MID1 protein binds to mutant huntingtin (HTT) RNA, which is linked to Huntington's disease (HD), at its CAG repeat region and induces protein synthesis of mutant protein...
2016: Frontiers in Cellular Neuroscience
Timothy M Brenza, Shivani Ghaisas, Julia E Vela Ramirez, Dilshan Harischandra, Vellareddy Anantharam, Balaraman Kalyanaraman, Anumantha G Kanthasamy, Balaji Narasimhan
A progressive loss of neuronal structure and function is a signature of many neurodegenerative conditions including chronic traumatic encephalopathy, Parkinson's, Huntington's and Alzheimer's diseases. Mitochondrial dysfunction and oxidative and nitrative stress have been implicated as key pathological mechanisms underlying the neurodegenerative processes. However, current therapeutic approaches targeting oxidative damage are ineffective in preventing the progression of neurodegeneration. Mitochondria-targeted antioxidants were recently shown to alleviate oxidative damage...
October 19, 2016: Nanomedicine: Nanotechnology, Biology, and Medicine
Agnieszka Fiszer, Marianna E Ellison-Klimontowicz, Wlodzimierz J Krzyzosiak
Polyglutamine (polyQ) diseases comprise a group of nine genetic disorders that are caused by the expansion of the CAG triplet repeat, which encodes glutamine, in unrelated single genes. Various oligonucleotide (ON)-based therapeutic approaches have been considered for polyQ diseases. The very attractive CAG repeat-targeting strategy offers selective silencing of the mutant allele by directly targeting the mutation site. CAG repeat-targeting miRNA-like siRNAs have been shown to specifically inhibit the mutant gene expression, and their characteristic feature is the formation of mismatches in their interactions with the target site...
October 21, 2016: Acta Biochimica Polonica
Sylvia Neumann, Romain Chassefeyre, George E Campbell, Sandra E Encalada
In axons, proper localization of proteins, vesicles, organelles, and other cargoes is accomplished by the highly regulated coordination of kinesins and dyneins, molecular motors that bind to cargoes and translocate them along microtubule (MT) tracks. Impairment of axonal transport is implicated in the pathogenesis of multiple neurodegenerative disorders including Alzheimer's and Huntington's diseases. To understand how MT-based cargo motility is regulated and to delineate its role in neurodegeneration, it is critical to analyze the detailed dynamics of moving cargoes inside axons...
October 22, 2016: Traffic
Cheng-Fu Chang, Yi-Chao Lee, Kuen-Haur Lee, Hui-Ching Lin, Chia-Ling Chen, Che-Kun James Shen, Chi-Chen Huang
BACKGROUND: In the central nervous system regions of the sporadic and familial FTLD and ALS patients, TDP-43 has been identified as the major component of UBIs inclusions which is abnormally hyperphosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form detergent-insoluble aggregates. So far, the effective drugs for FTLD and ALS neurodegenerative diseases are yet to be developed. Autophagy has been demonstrated as the major metabolism route of the pathological TDP-43 inclusions, hence activation of autophagy is a potential therapeutic strategy for TDP-43 pathogenesis in FTLD and ALS...
October 21, 2016: Journal of Biomedical Science
Alba Di Pardo, Enrico Amico, Vittorio Maglione
Huntington Disease (HD) is a genetic neurodegenerative disorder characterized by broad types of cellular and molecular dysfunctions that may affect both neuronal and non-neuronal cell populations. Among all the molecular mechanisms underlying the complex pathogenesis of the disease, alteration of sphingolipids has been identified as one of the most important determinants in the last years. In the present study, besides the purpose of further confirming the evidence of perturbed metabolism of gangliosides GM1, GD1a, and GT1b the most abundant cerebral glycosphingolipids, in the striatal and cortical tissues of HD transgenic mice, we aimed to test the hypothesis that abnormal levels of these lipids may be found also in the corpus callosum white matter, a ganglioside-enriched brain region described being dysfunctional early in the disease...
2016: Frontiers in Neuroscience
Samina Salim
Biochemical integrity of the brain is vital for normal functioning of the central nervous system (CNS). One of the contributing factors of cerebral biochemical impairment is a chemical process called oxidative stress. Oxidative stress occurs upon excessive free radical production due to insufficiency of counteracting antioxidant response system. The brain with its high oxygen consumption and lipid-rich content is highly susceptible to oxidative stress. Therefore, oxidative stress-induced damage to the brain has a strong potential to negatively impact normal CNS functions...
October 17, 2016: Journal of Pharmacology and Experimental Therapeutics
João Casaca-Carreira, Yasin Temel, Iñaki Larrakoetxea, Ali Jahanshahi
Antisense oligonucleotide (AON) therapy is emerging as a potential treatment strategy for neurodegenerative diseases, such as spinal muscular atrophy, Huntington's disease, and amyotrophic lateral sclerosis. AONs function at the cellular level by, for example, direct interference with the expression of gene products or the molecular activation of neuroprotective pathways. However, AON therapy faces a major obstacle limiting its clinical application for central nervous system (CNS) disorders: the blood-brain barrier...
October 18, 2016: Nucleic Acid Therapeutics
David Mathar, Leonora Wilkinson, Anna K Holl, Jane Neumann, Lorenz Deserno, Arno Villringer, Marjan Jahanshahi, Annette Horstmann
Incidental learning of appropriate stimulus-response associations is crucial for optimal functioning within our complex environment. Positive and negative prediction errors (PEs) serve as neural teaching signals within distinct ('direct'/'indirect') dopaminergic pathways to update associations and optimize subsequent behavior. Using a computational reinforcement learning model, we assessed learning from positive and negative PEs on a probabilistic task (Weather Prediction Task - WPT) in three populations that allow different inferences on the role of dopamine (DA) signals: (1) Healthy volunteers that repeatedly underwent [(11)C]raclopride Positron Emission Tomography (PET), allowing for assessment of striatal DA release during learning, (2) Parkinson's disease (PD) patients tested both on and off L-DOPA medication, (3) early Huntington's disease (HD) patients, a disease that is associated with hyper-activation of the 'direct' pathway...
September 19, 2016: Cortex; a Journal Devoted to the Study of the Nervous System and Behavior
Koning Shen, Barbara Calamini, Jonathan A Fauerbach, Boxue Ma, Sarah H Shahmoradian, Ivana L Serrano Lachapel, Wah Chiu, Donald C Lo, Judith Frydman
Many neurodegenerative diseases are linked to amyloid aggregation. In Huntington's disease (HD), neurotoxicity correlates with increased aggregation propensity of a polyglutamine (polyQ) expansion in exon 1 of mutant huntingtin protein (mHtt). Here we establish how the domains flanking the polyQ tract shape the mHtt conformational landscape in vitro and in neurons. In vitro, the flanking domains have opposing effects on the conformation and stabilities of oligomers and amyloid fibrils. The N-terminal N17 promotes amyloid fibril formation, while the C-terminal Proline Rich Domain destabilizes fibrils and enhances oligomer formation...
October 18, 2016: ELife
Ralf Reilmann
No abstract text is available yet for this article.
October 17, 2016: JAMA Neurology
Russell L Margolis, Dobrila D Rudnicki
PURPOSE OF REVIEW: Huntington's disease-like 2 (HDL2) is a rare, progressive, autosomal dominant neurodegenerative disorder that genetically, clinically, and pathologically closely resembles Huntington's disease. We review HDL2 pathogenic mechanisms and examine the implications of these mechanisms for Huntington's disease and related diseases. RECENT FINDINGS: HDL2 is caused by a CTG/CAG repeat expansion in junctophilin-3. Available data from cell and animal models and human brain suggest that HDL2 is a complex disease in which transcripts and proteins expressed bidirectionally from the junctophilin-3 locus contribute to pathogenesis through both gain-and loss-of-function mechanisms...
October 5, 2016: Current Opinion in Neurology
Sebastian Frese, Jens A Petersen, Maria Ligon-Auer, Sandro Manuel Mueller, Violeta Mihaylova, Saskia M Gehrig, Veronika Kana, Elisabeth J Rushing, Evelyn Unterburger, Georg Kägi, Jean-Marc Burgunder, Marco Toigo, Hans H Jung
Huntington disease (HD) is a relentlessly progressive neurodegenerative disorder with symptoms across a wide range of neurological domains, including cognitive and motor dysfunction. There is still no causative treatment for HD but environmental factors such as passive lifestyle may modulate disease onset and progression. In humans, multidisciplinary rehabilitation has a positive impact on cognitive functions. However, a specific role for exercise as a component of an environmental enrichment effect has been difficult to demonstrate...
October 17, 2016: Journal of Neurology
Mark B Warren, Kathryn M Schak
A diagnosis of Huntington's disease has broad social, vocational, reproductive and psychological implications. The ability to accurately diagnose the illness via genetic testing is not new. However, given a persistent lack of robustly effective interventions, it remains an area of ethical concern. The difficulty is compounded in cases of intellectual disability. This paper presents a case of genetic testing for Huntington's disease conducted on a patient with intellectual disability with guardian consent, but without the patient's direct knowledge and how the family illness narrative and psychiatric care were employed in the eventual disclosure of the patient's diagnosis and subsequent management...
October 15, 2016: Journal of Genetic Counseling
John S Bett
Cells have developed an evolutionary obligation to survey and maintain proteome fidelity and avoid the possible toxic consequences of protein misfolding and aggregation. Disturbances to protein homoeostasis (proteostasis) can result in severe cellular phenotypes and are closely linked with the accumulation of microscopically visible deposits of aggregated proteins. These include inclusion bodies found in AD (Alzheimer's disease), HD (Huntington's disease) and ALS (amyotrophic lateral sclerosis) patient neurons...
October 15, 2016: Essays in Biochemistry
Kimberly A Quaid, Shirley W Eberly, Elise Kayson-Rubin, David Oakes, Ira Shoulson
Huntington disease (HD) is a late onset ultimately fatal neurodegenerative disorder caused by a CAG triplet repeat expansion in the Huntingtin gene which was discovered in 1993. The PHAROS study is a unique observational study of 1001 individuals at risk for HD who had not been previously tested for HD and who had no plans to do so. In this cohort, 104 (10%) individuals changed their minds and chose to be tested during the course of the study but outside of the study protocol. Baseline behavioral scores, especially apathy, were more strongly associated with later genetic testing than motor and chorea scores, particularly among subjects with expanded CAG repeat length...
October 14, 2016: Clinical Genetics
Yoshihiro Kino, Chika Washizu, Masaru Kurosawa, Mizuki Yamada, Hiroshi Doi, Toru Takumi, Hiroaki Adachi, Masahisa Katsuno, Gen Sobue, Geoffrey G Hicks, Nobutaka Hattori, Tomomi Shimogori, Nobuyuki Nukina
FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of (HD, but not spinal and bulbar muscular atrophy (SBMA). This difference was correlated with the degree of pathological association between disease proteins and FUS/TLS...
October 14, 2016: Scientific Reports
Yuwei Jiang, Sonja E DiGregorio, Martin L Duennwald, Patrick Lajoie
The palette of fluorescent proteins (FPs) available for live-cell imaging contains proteins that strongly differ in their biophysical properties. FPs cannot be assumed to be equivalent and in certain cases could significantly perturb the behavior of fluorescent reporters. We employed Saccharomyces cerevisiae to comprehensively study the impact of FPs on the toxicity of polyglutamine (polyQ) expansion proteins associated with Huntington's disease. The toxicity of polyQ fusion constructs is highly dependent on the sequences flanking the polyQ repeats...
October 13, 2016: Traffic
Chiara Sarappa, Elena Salvatore, Alessandro Filla, Sirio Cocozza, Cinzia Valeria Russo, Francesco Saccà, Arturo Brunetti, Giuseppe De Michele, Mario Quarantelli
The fractional Amplitude of Low Frequency Fluctuations (fALFF) and the degree of local synchronization (Regional Homogeneity - ReHo) of resting-state BOLD signal have been suggested to map spontaneous neuronal activity and local functional connectivity, respectively. We compared voxelwise, independent of atrophy, the fALFF and ReHo patterns of 11 presymptomatic (ps-HD) and 28 symptomatic (sHD) Huntington's disease mutation carriers, with those of 40 normal volunteers, and tested their possible correlations with the motor and cognitive subscores of the Unified Huntington's Disease Rating Scale...
October 12, 2016: Brain Imaging and Behavior
Tua Vinther-Jensen, Lars Börnsen, Esben Budtz-Jørgensen, Cecilie Ammitzbøll, Ida U Larsen, Lena E Hjermind, Finn Sellebjerg, Jørgen E Nielsen
OBJECTIVE: To investigate CSF biomarkers of neuroinflammation and neurodegeneration in Huntington disease (HD) gene-expansion carriers compared to controls and to investigate these biomarkers in association with clinical HD rating scales and disease burden score. METHODS: We collected CSF from 32 premanifest and 48 manifest HD gene-expansion carriers and 24 gene-expansion negative at-risk controls. We examined biomarkers of neuroinflammation (matrix metalloproteinase 9, C-X-C motif chemokine 13, terminal complement complex, chitinase-3-like-protein 1 [CHI3L1], and osteopontin [OPN]) and neurodegeneration (microtubule-associated protein tau, neurofilament light polypeptide [NFL], and myelin basic protein [MBP])...
December 2016: Neurology® Neuroimmunology & Neuroinflammation
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"