Read by QxMD icon Read

Multiwall carbon nanotubes

Zhaokun Wang, Xue Zhang, Shenmeng Jiang, Xingjie Guo
In this work, the magnetic multiwalled carbon nanotubes (Mag-MWCNTs) were prepared by self-assembly method and characterized by scanning electron microscopy, X-ray powder diffraction, energy dispersive X-ray and vibrating sample magnetometer. Then, these synthetic Mag-MWCNTs were used as sorbents to extract five β-blockers (atenolol, metoprolol, esmolol, pindolol and arotinolol) by magnetic solid-phase extraction. The target analytes adsorbed on Mag-MWCNTs were eluted and determined on a chiral α-acid glycoprotein column coupled with a triple quadrupole mass spectrometry...
April 1, 2018: Talanta
J Milne, I Zhitomirsky
MnO2 and Mn3O4 particles were prepared by wet chemical methods and efficiently dispersed and mixed with multiwalled carbon nanotubes (MWCNT) for the fabrication of composite MnO2-MWCNT and Mn3O4-MWCNT electrodes for electrochemical supercapacitors (ES). The problem of particle agglomeration was addressed by particle extraction through a liquid-liquid interface (PELLI) using octanohydroxamic acid (OHA) as a new extractor. OHA exhibited remarkable adsorption on particles due to a bidentate bonding mechanism. The use of OHA broadened the application of PELLI technology, because it allowed good extraction of particles from an aqueous phase at high pH...
January 6, 2018: Journal of Colloid and Interface Science
Shilpa A Pande, Bidhan Pandit, Babasaheb R Sankapal
Supercapacitors as one of the most important energy storage devices have been receiving worldwide attention due to their high capacitance, power density, long cycle life, and rapid charge/discharge rates as compared to conventional electrolytic capacitors and rechargeable batteries. A nanocomposite has been prepared using mercury sulfide (HgS) and multiwalled carbon nanotubes (MWCNTs) via novel, simple, and low-cost 'dip and dry' process followed by successive ionic layer adsorption and reaction (SILAR) method...
December 27, 2017: Journal of Colloid and Interface Science
Cintia J Fernandez, Claudia E Domini, Marcos Grünhut, Adriana G Lista
A soft material formed by multiwall carbon nanotubes and 1-butyl-3-methyl imidazolium chloride was used as sorbent material to perform the chromium speciation in natural waters. This soft material was not yet used for the speciation of metals as chromium. Thus, a multicommutated flow system containing a minicolumn packed with the soft material was designed. The procedure was based on the capacity of the sorbent to retain Cr(VI) as Cr2O7= and allow to pass Cr(III) through the column. Then, a fully automated flow-batch analysis system was developed to quantify both species using chemiluminescence detection...
December 29, 2017: Chemosphere
Razi Ahmad, Sunil Kumar Khare
In present study, Aspergillus niger cellulase was immobilized onto functionalized multiwalled carbon nanotubes (MWCNTs) via carbodiimide coupling. MWCNTs offer unique advantages including enhanced electronics properties, a large edge to basal plane ratio, rapid electrode kinetics and it's possess higher tensile strength properties due to their structural arrangements. The immobilization was confirmed by FTIR (Fourier transform infrared spectroscopy) and SEM (scanning electron microscope). The bionanoconjugates prepared under optimized condition retained 85% activity with improved pH and thermal stability...
December 27, 2017: Bioresource Technology
Ramonita Díaz-Ayala, Lisa Torres-González, Ruth Pietri, Carlos R Cabrera, Juan López-Garriga
The recombinant HbI was fused with a poly-Lys tag ((Lys)6-tagged rHbI) for specific-site covalent immobilization on two carbon nanotube transducer surfaces, i.e., powder and vertically aligned carbon nanotubes. The immobilization was achieved by following two steps: (1) generation of amine-reactive ester from the carboxylic acid groups of the surfaces and (2) coupling these groups with the amine groups of the Lys-tag. We analyzed the immobilization process using different conditions and techniques to differentiate protein covalent attachment from physical adsorption...
December 31, 2017: ACS Omega
Samira Mansouri Majd, Abdollah Salimi
The development of a novel flexible and ultrasensitive aptasensor based on carboxylated multiwalled carbon nanotubes (MWCNTs)/ reduced graphene oxide-based field effect transistor (FET) has been reported for label-free detection of the ovarian cancer antigen (CA125). The fabricated sensor has a straightforward design based on the noncovalent attachment of MWCNTs/aptamer conjugated onto few layers reduced graphene oxide nanosheets and its integration with poly-methyl methacrylate (PMMA) as a suitable platform for designing flexible field-effect transistors...
February 13, 2018: Analytica Chimica Acta
Giovani Valentin Cimbaluk, Wanessa Algarte Ramsdorf, Maiara Carolina Perussolo, Hayanna Karla Felipe Santos, Helena Cristina Da Silva De Assis, Mariane Cristina Schnitzler, Danielle Caroline Schnitzler, Pedro Gontijo Carneiro, Marta Margarete Cestari
Carbon Nanotubes are among the most promising materials for the technology industry. Their unique physical and chemical proprieties may reduce the production costs and improve the efficiency of a large range of products. However, the same characteristics that have made nanomaterials interesting for industry may be responsible for inducing toxic effects on the aquatic organisms. Since the carbon nanotubes toxicity is still a controversial issue, we performed tests of acute and subchronic exposure to a commercial sample of multiwalled carbon nanotubes in two fish species, an exotic model (Danio rerio) and a native one (Astyanax altiparanae)...
December 26, 2017: Ecotoxicology and Environmental Safety
Zhenhua Yan, Yuxuan Liu, Hongwei Sun, Guanghua Lu
Due to increasing use and release, both multiwall carbon nanotubes (MWCNTs) and 17β-estradiol (E2) may co-exist and interact with each other in aquatic environments. However, little is known about their combined effects on non-target organisms, especially in the presence of other environmental factors. In this study, the interplay between MWCNTs and E2 in the early life stages of zebrafish was investigated, focusing on the alterations in estrogenic responses with and without other environmental factors. There were no significant differences in the hatchability, mortality, or physical development of zebrafish in any treatments...
December 27, 2017: Environmental Science and Pollution Research International
Kata Hajdu, Ateeq Ur Rehman, Imre Vass, László Nagy
Photosynthetic reaction center proteins (RCs) are the most efficient light energy converter systems in nature. The first steps of the primary charge separation in photosynthesis take place in these proteins. Due to their unique properties, combining RCs with nano-structures promising applications can be predicted in optoelectronic systems. In the present work RCs purified from Rhodobacter sphaeroides purple bacteria were immobilized on multiwalled carbon nanotubes (CNTs). Carboxyl-and amine-functionalised CNTs were used, so different binding procedures, physical sorption and chemical sorption as well, could be applied as immobilization techniques...
December 26, 2017: Materials
Antonino Mazzaglia, Angela Scala, Giuseppe Sortino, Roberto Zagami, Yanqui Zhu, Maria Teresa Sciortino, Rosamaria Pennisi, Maria Musarra Pizzo, Giulia Neri, Giovanni Grassi, Anna Piperno
Functionalized carbon nanotubes (CNTs) have been proposed in the last years as vectors for delivery of biomolecules, proteins and DNA into various cells. In this study, a new multiwalled carbon nanotube β-cyclodextrin platform (MWCNT-CD) modified with branched polyethylenimine (PEI) and doped with Rhodamine (Rhod), MWCNT-CD-PEI-Rhod, was designed and investigated as drug delivery system. The drug binding abilities of MWCNT-CD-PEI-Rhod towards Cidofovir (Cid) and DNA plasmid encoding enhanced green fluorescence protein (pCMS-EGFP) were investigated by complementary spectroscopic techniques...
December 15, 2017: Colloids and Surfaces. B, Biointerfaces
Mustafa M Musameh, Christopher J Dunn, Md Hemayet Uddin, Tara D Sutherland, Trevor D Rapson
Using heme entrapped in recombinant silk films, we have produced 3rd generation biosensors, which allow direct electron transfer from the heme center to an electrode avoiding the need for electron mediators. Here, we demonstrate the use of these heme-silk films for the detection of nitric oxide (NO) at nanomolar levels in the presence and absence of oxygen. The sensor was prepared by drop-casting a silk solution on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT) followed by infusion with heme...
December 15, 2017: Biosensors & Bioelectronics
Sunny C Patel, Owais Alam, Balaji Sitharaman
Carbon nanomaterial coatings have been widely investigated for many biomedical applications including bone tissue engineering. Current methods to fabricate carbon nanomaterial coatings are limited by specific substrate requirements and the lack of strong bonds between the nanomaterials. Furthermore, few studies compare the effect of carbon nanoparticle architecture on stem cell differentiation and mineralization for osteogenic differentiation. Herein, we report a study comparing chemically crosslinked carbon nanotubes (of various diameters), graphene nanoplatelets, and graphene nanoribbons coatings for adipose derived stem cell differentiation towards an osteogenic lineage...
December 23, 2017: Journal of Biomedical Materials Research. Part A
Ali Reza Ghiasvand, Kolsoum Nouriasl, Fatemeh Yazdankhah
A low-cost, sensitive and reliable reduced-pressure headspace solid-phase microextraction (HS-SPME) setup was developed and evaluated for direct extraction of residual solvents in commercial antibiotics, followed by determination by gas chromatography with flame ionization detection (GC-FID). A stainless steel narrow wire was made porous and adhesive by platinization by a modified electrophoretic deposition method and coated with a polyaniline/multiwalled carbon nanotube nanocomposite. All experimental variables affecting the extraction efficiency were investigated for both atmospheric-pressure and reduced-pressure conditions...
December 22, 2017: Analytical and Bioanalytical Chemistry
Surabhi Somkuwar, Sunil Kumar Mishra, Benaiffer Agrawal, Rupali Choure
Purpose: This in vitro study was done to compare the flexural strength of polymethyl methacrylate resin reinforced with multiwalled carbon nanotubes (MWCNTs) and processed by conventional water bath technique and using microwave energy. Materials and Methods: A total of 180 acrylic resin specimens measuring 65 mm × 10 mm × 2.5 mm were fabricated, with conventional water bath groups and microwave group having ninety specimens each. Ninety specimens were divided into thirty specimens as control and subgroups containing 0...
October 2017: Journal of Indian Prosthodontic Society
Shuang Yin, Lihua Zhao, Zhanfang Ma
Enzyme-free catalytic amplification is of great significance for sensitive label-free electrochemical immunosensors. In this study, an enzyme-free catalytic amplification based label-free amperometric immunosensor was developed for sensitive detection of neuron-specific enolase (NSE) by use of a AuPd nanoparticle-multiwalled carbon nanotube (AuPd-MWCNT) composite, ferrocenecarboxaldehyde (Fc-CHO), and chitosan hybrid hydrogel. The intrinsic virtues of chitosan not only resulted in bioactivity of the attached antibodies and made the other component of the immunosensor easier to fix on the electrode, but also imparted abundant binding sites to the hydrogel to condense Fc-CHO to achieve the initial signal amplification...
December 15, 2017: Analytical and Bioanalytical Chemistry
Wenbing Li, Yanju Liu, Jinsong Leng
Shape memory polymers (SMPs) are expected to play more and more important roles in space-deployable structures, smart actuators, and other high-tech areas. Nevertheless, because of the difficulties in fabrication and the programmability of temporary shape recovery, SMPs have not yet been widely applied in real fields. It is ideal to incorporate the different independent functional building blocks into a material. Herein, we designed a simple method to incorporate four functional building blocks: a neat epoxy-based shape memory (neat SMEP) resin, an SMEP composited with Fe3O4 (SMEP-Fe3O4), an SMEP composited with multiwalled carbon nanotubes, and an SMEP composited with p-aminodiphenylimide into a multicomposite, in which the four region surfaces could be programmed with different language code patterns according to a preset command by imprint lithography...
December 12, 2017: ACS Applied Materials & Interfaces
Angelo Antonio D'Archivio, Maria Anna Maggi, Antonella Odoardi, Sandro Santucci, Maurizio Passacantando
Multi-walled carbon nanotubes (MWCNTs), because of small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in the aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water...
December 11, 2017: Nanotechnology
Arjun Mohan, Anagha Malur, Matthew McPeek, Barbara P Barna, Lynn M Schnapp, Mary Jane Thomassen, Sina A Gharib
To advance our understanding of the pathobiology of sarcoidosis, we developed a multiwall carbon nanotube (MWCNT)-based murine model that shows marked histological and inflammatory signal similarities to this disease. In this study, we compared the alveolar macrophage transcriptional signatures of our animal model with human sarcoidosis to identify overlapping molecular programs. Whole-genome microarrays were used to assess gene expression of alveolar macrophages in 6 MWCNT-exposed and 6 control animals. The results were compared to the transcriptional profiles of alveolar immune cells in 15 sarcoidosis patients and 12 healthy humans...
December 6, 2017: American Journal of Physiology. Lung Cellular and Molecular Physiology
Maria R Hartono, Ariel Kushmaro, Xiaodong Chen, Robert S Marks
Carbon nanotubes (CNTs) have emerged recently as superior adsorbent materials for the removal of recalcitrant pollutants. The potential of combining the sorption capability of CNTs with bacterial degradation for pollutant removal, however, necessitates further investigation of the mechanisms of CNTs' toxicity towards bacterial cells. In this study, we used a panel of stress-responsive recombinant Escherichia coli bioluminescence bacterial strains to explore the possible mechanisms of toxicity of multiwalled carbon nanotubes (MWCNTs)...
December 5, 2017: Environmental Science and Pollution Research International
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"