Read by QxMD icon Read

Integrated network

Douglas H Schultz, Michael W Cole
Spontaneous fluctuations in neural activity and connectivity are thought to support cognition and behavior. In this issue of Neuron, Shine et al. (2016) describe a possible mechanism responsible for fluctuations in the human brain's network architecture that are related to rapid shifts in cognitive state.
October 19, 2016: Neuron
Swann Pichon, Raphael Guex, Patrik Vuilleumier
Unconscious processes are often assumed immune from attention influence. Recent behavioral studies suggest however that the processing of subliminal information can be influenced by temporal attention. To examine the neural mechanisms underlying these effects, we used a stringent masking paradigm together with fMRI to investigate how temporal attention modulates the processing of unseen (masked) faces. Participants performed a gender decision task on a visible neutral target face, preceded by a masked prime face that could vary in gender (same or different than target) and emotion expression (neutral or fearful)...
2016: PloS One
Elin T G Kersten, Gerard H Koppelman
PURPOSE OF REVIEW: Although currently available drugs to treat asthma are effective in most patients, a proportion of patients do not respond or experience side-effects; which is partly genetically determined. Pharmacogenetics is the study of how genetic variations influence drug response. In this review, we summarize prior results and recent studies in pharmacogenetics to determine if we can use genetic profiles for personalized treatment of asthma. RECENT FINDINGS: The field of pharmacogenetics has moved from candidate gene studies in single populations toward genome-wide association studies and meta-analysis of multiple studies...
October 18, 2016: Current Opinion in Pulmonary Medicine
Davide Zanchi, Anne Christin Meyer-Gerspach, Claudia Suenderhauf, Katharina Janach, Carel W le Roux, Sven Haller, Jürgen Drewe, Christoph Beglinger, Bettina K Wölnerhanssen, Stefan Borgwardt
Depending on their protein content, single meals can rapidly influence the uptake of amino acids into the brain and thereby modify brain functions. The current study investigates the effects of two different amino acids on the human gut-brain system, using a multimodal approach, integrating physiological and neuroimaging data. In a randomized, placebo-controlled trial, L-tryptophan, L-leucine, glucose and water were administered directly into the gut of 20 healthy subjects. Functional MRI (fMRI) in a resting state paradigm (RS), combined with the assessment of insulin and glucose blood concentration, was performed before and after treatment...
October 20, 2016: Scientific Reports
Yongbo Bao, Xiao Liu, Weiwei Zhang, Jianping Cao, Wei Li, Chenghua Li, Zhihua Lin
Clam, a filter-feeding lamellibranch mollusk, is capable to accumulate high levels of trace metals and has therefore become a model for investigation the mechanism of heavy metal toxification. In this study, the effects of cadmium were characterized in the gills of Tegillarca granosa during a 96-hour exposure course using integrated metabolomic and proteomic approaches. Neurotoxicity and disturbances in energy metabolism were implicated according to the metabolic responses after Cd exposure, and eventually affected the osmotic function of gill tissue...
October 20, 2016: Scientific Reports
Kris G Alavattam, Yasuko Kato, Ho-Su Sin, So Maezawa, Ian J Kowalski, Fan Zhang, Qishen Pang, Paul R Andreassen, Satoshi H Namekawa
Precise epigenetic regulation of the sex chromosomes is vital for the male germline. Here, we analyze meiosis in eight mouse models deficient for various DNA damage response (DDR) factors, including Fanconi anemia (FA) proteins. We reveal a network of FA and DDR proteins in which FA core factors FANCA, FANCB, and FANCC are essential for FANCD2 foci formation, whereas BRCA1 (FANCS), MDC1, and RNF8 are required for BRCA2 (FANCD1) and SLX4 (FANCP) accumulation on the sex chromosomes during meiosis. In addition, FA proteins modulate distinct histone marks on the sex chromosomes: FA core proteins and FANCD2 regulate H3K9 methylation, while FANCD2 and RNF8 function together to regulate H3K4 methylation independently of FA core proteins...
October 18, 2016: Cell Reports
Chinglin Wu, Suyu Zhong, Hsuehchih Chen
Remote association is a core ability that influences creative output. In contrast to close association, remote association is commonly agreed to be connected with more original and unique concepts. However, although existing studies have discovered that creativity is closely related to the white-matter structure of the brain, there are no studies that examine the relevance between the connectivity efficiencies and creativity of the brain regions from the perspective of networks. Consequently, this study constructed a brain white matter network structure that consisted of cerebral tissues and nerve fibers and used graph theory to analyze the connection efficiencies among the network nodes, further illuminating the differences between remote and close association in relation to the connectivity of the brain network...
2016: PloS One
Si Wu, Saleh Alseekh, Álvaro Cuadros-Inostroza, Corina M Fusari, Marek Mutwil, Rik Kooke, Joost B Keurentjes, Alisdair R Fernie, Lothar Willmitzer, Yariv Brotman
Plant primary metabolism is a highly coordinated, central, and complex network of biochemical processes regulated at both the genetic and post-translational levels. The genetic basis of this network can be explored by analyzing the metabolic composition of genetically diverse genotypes in a given plant species. Here, we report an integrative strategy combining quantitative genetic mapping and metabolite‒transcript correlation networks to identify functional associations between genes and primary metabolites in Arabidopsis thaliana...
October 2016: PLoS Genetics
Hyejung Won, Luis de la Torre-Ubieta, Jason L Stein, Neelroop N Parikshak, Jerry Huang, Carli K Opland, Michael J Gandal, Gavin J Sutton, Farhad Hormozdiari, Daning Lu, Changhoon Lee, Eleazar Eskin, Irina Voineagu, Jason Ernst, Daniel H Geschwind
Three-dimensional physical interactions within chromosomes dynamically regulate gene expression in a tissue-specific manner. However, the 3D organization of chromosomes during human brain development and its role in regulating gene networks dysregulated in neurodevelopmental disorders, such as autism or schizophrenia, are unknown. Here we generate high-resolution 3D maps of chromatin contacts during human corticogenesis, permitting large-scale annotation of previously uncharacterized regulatory relationships relevant to the evolution of human cognition and disease...
October 19, 2016: Nature
Clara Lopes Novo, Peter J Rugg-Gunn
Pluripotent cells are characterized by a globally open and accessible chromatin organization that is thought to contribute to cellular plasticity and developmental decision-making. We recently identified the pluripotency factor Nanog as a key regulator of this form of chromatin architecture in mouse embryonic stem cells. In particular, we demonstrated that the transcription factors Nanog and Sall1 co-dependently mediate the epigenetic state of pericentromeric heterochromatin to reinforce a more open and accessible organization in pluripotent cells...
October 19, 2016: Nucleus
Stefano Papazian, Eliezer Khaling, Christelle Bonnet, Steve Lassueur, Philippe Reymond, Thomas Moritz, James Blande, Benedicte Riber Albrectsen
Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of wild black mustard (Brassica nigra) exposed consecutively to O3 and the specialist herbivore Pieris brassicae. Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses...
October 6, 2016: Plant Physiology
Ariel Haimovici, Pablo Balenzuela, Enzo Tagliazucchi
Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These inter-areal functional interactions develop in the background of a complex network of axonal connections linking cortical and sub-cortical neurons, termed the human "structural connectome". Theoretical considerations and experimental evidence support the view that the human brain can be modeled as a system operating at a critical point between ordered (sub-critical) and disordered (super-critical) phases...
October 19, 2016: Brain Connectivity
B Li, J Liu, Y Y Zhang, P Q Wang, Y N Yu, R X Kang, H L Wu, X X Zhang, Z Wang, Y Y Wang
Module-based methods have made much progress in deconstructing biological networks. However, it is a great challenge to quantitatively compare the topological structural variations of modules (allosteric modules [AMs]) under different situations. A total of 23, 42, and 15 coexpression modules were identified in baicalin (BA), jasminoidin (JA), and ursodeoxycholic acid (UA) in a global anti-ischemic mice network, respectively. Then, we integrated the methods of module-based consensus ratio (MCR) and modified Zsummary module statistic to validate 12 BA, 22 JA, and 8 UA on-modules based on comparing with vehicle...
October 19, 2016: CPT: Pharmacometrics & Systems Pharmacology
Mark O'Driscoll
Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division...
October 18, 2016: Journal of Pathology
Zhanzhan Xu, Yu Zhou, Yexuan Cao, Thi Lan Anh Dinh, Jing Wan, Min Zhao
Ovarian cancer is the first leading cause of mortality in gynecological malignancies. To identify key genes and microRNAs in ovarian cancer, mRNA microarray dataset GSE36668, GSE18520, GSE14407 and microRNA dataset GSE47841 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and microRNAs (DEMs) were obtained using GEO2R. Functional and pathway enrichment analysis were performed for DEGs using DAVID database. Protein-protein interaction (PPI) network was established by STRING and visualized by Cytoscape...
November 2016: Medical Oncology
Mark J Millan, Jean-Michel Rivet, Alain Gobert
The highly-interconnected and neurochemically-rich frontal cortex plays a crucial role in the regulation of mood and cognition, domains disrupted in depression and other central nervous system disorders, and it is an important site of action for their therapeutic control. For improving our understanding of the function and dysfunction of the frontal cortex, and for identifying improved treatments, quantification of extracellular pools of neuromodulators by microdialysis in freely-moving rodents has proven indispensable...
October 17, 2016: Journal of Psychopharmacology
Kirti M Yenkie, WenZhao Wu, Ryan L Clark, Brian F Pfleger, Thatcher W Root, Christos T Maravelias
Microbial conversion of renewable feedstocks to high-value chemicals is an attractive alternative to current petrochemical processes because it offers the potential to reduce net CO2 emissions and integrate with bioremediation objectives. Microbes have been genetically engineered to produce a growing number of high-value chemicals in sufficient titer, rate, and yield from renewable feedstocks. However, high-yield bioconversion is only one aspect of an economically viable process. Separation of biologically synthesized chemicals from process streams is a major challenge that can contribute to >70% of the total production costs...
October 15, 2016: Biotechnology Advances
Marie-Josée Fleury, Guy Grenier, Catherine Vallée, Denise Aubé, Lambert Farand, Jean-Marie Bamvita, Geneviève Cyr
BACKGROUND: This study evaluates implementation of the Quebec Mental Health (MH) Reform (2005-2015) which aimed to improve accessibility, quality and continuity of care by developing primary care and optimizing integrated service networks. Implementation of MH primary care teams, clinical strategies for consolidating primary care, integration strategies to improve collaboration between primary care and specialized services, and facilitators and barriers related to these measures were examined...
October 18, 2016: BMC Health Services Research
Salma Jamal, Sukriti Goyal, Asheesh Shanker, Abhinav Grover
BACKGROUND: Alzheimer's disease (AD) is a complex progressive neurodegenerative disorder commonly characterized by short term memory loss. Presently no effective therapeutic treatments exist that can completely cure this disease. The cause of Alzheimer's is still unclear, however one of the other major factors involved in AD pathogenesis are the genetic factors and around 70 % risk of the disease is assumed to be due to the large number of genes involved. Although genetic association studies have revealed a number of potential AD susceptibility genes, there still exists a need for identification of unidentified AD-associated genes and therapeutic targets to have better understanding of the disease-causing mechanisms of Alzheimer's towards development of effective AD therapeutics...
October 18, 2016: BMC Genomics
Langdong Chen, Diya Lv, Dongyao Wang, Xiaofei Chen, Zhenyu Zhu, Yan Cao, Yifeng Chai
Herbal medicines have long been widely used in the treatment of various complex diseases in China. However, the active constituents and therapeutic mechanisms of many herbal medicines remain undefined. Therefore, the identification of the active components and target proteins in these herbal medicines is a formidable task in herbal medicine research. In this study, we proposed a strategy, which integrates network pharmacology with biomedical analysis and surface plasmon resonance (SPR) to predict the active ingredients and potential targets of herbal medicine Sophora flavescens or Kushen in Chinese, and evaluate its anti-fibrosis activity...
October 18, 2016: Molecular BioSystems
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"