Read by QxMD icon Read


D Jun, V Huang, J T Beatty
The photosynthetic complexes of the thermophile Thermochromatium tepidum are of considerable interest in biohybrid solar cell applications because of the capability of thermophilic proteins to tolerate elevated temperatures. Synthetic operons encoding reaction centre (RC) and light harvesting 1 (LH1) pigment-protein complexes of T. tepidum were expressed in the mesophile Rhodobacter sphaeroides The T. tepidum RC (TRC) was assembled, and functional with the addition of menadione to populate the QA pocket. The production of the T...
August 18, 2017: Applied and Environmental Microbiology
Alexandra J Ramadan, Luke A Rochford, Sarah Fearn, Henry J Snaith
Cesium lead triiodide (CsPbI3) is an attractive material for photovoltaic applications due to its appropriate band gap, strong optical absorption and high thermal stability. However, the perovskite phase suffers from moisture induced structural instability. Previous studies have utilized a range of solvent systems to establish the role of solvent choice in structural instabilities. Despite this, effects of different solvents on the electronic structure of this material have not been compared. We report substantial chemical and compositional differences in thin films of CsPbI3 prepared from a range of solvent systems...
August 18, 2017: Journal of Physical Chemistry Letters
Mehedhi Hasan, Swaminathan Venkatesan, Dmitry A Lyashenko, Jason D Slinker, Alex Zakhidov
Organohalide lead (hybrid) perovskites have emerged as competitive semiconducting materials for photovoltaic devices due to their high performance and low cost. To further the understanding and optimization of these materials, solution based methods for interrogating and modifying perovskite thin films are needed. In this work, we report hydrofluoroether (HFE) solvent based electrolyte for electrochemical processing and characterization of organic-inorganic trihalide lead perovskite thin films. Organic perovskite films are soluble in most of the polar organic solvents and thus until now they were not considered suitable for electrochemical processing...
August 18, 2017: Analytical Chemistry
Mariia V Pavliuk, Arthur B Fernandes, Mohamed Abdellah, Daniel L A Fernandes, Caroline O Machado, Igor Rocha, Yocefu Hattori, Cristina Paun, Erick L Bastos, Jacinto Sá
The efficient conversion of light energy into chemical energy is key for sustainable human development. Several photocatalytic systems based on photovoltaic electrolysis have been used to produce hydrogen via water reduction. However, in such devices, light harvesting and proton reduction are carried separately, showing quantum efficiency of about 10-12%. Here, we report a nano-hybrid photocatalytic assembly that enables concomitant reductive hydrogen production and pollutant oxidation with solar-to-fuel efficiencies up to 20%...
August 17, 2017: Scientific Reports
M Nakamura, S Horiuchi, F Kagawa, N Ogawa, T Kurumaji, Y Tokura, M Kawasaki
Shift current is a steady-state photocurrent generated in non-centrosymmetric single crystals and has been considered to be one of the major origins of the bulk photovoltaic effect. The mechanism of this effect is the transfer of photogenerated charges by the shift of the wave functions, and its amplitude is closely related to the polarization of the electronic origin. Here, we report the photovoltaic effect in an organic molecular crystal tetrathiafulvalene-p-chloranil with a large ferroelectric polarization mostly induced by the intermolecular charge transfer...
August 17, 2017: Nature Communications
Xiangnan Sun, Saül Vélez, Ainhoa Atxabal, Amilcar Bedoya-Pinto, Subir Parui, Xiangwei Zhu, Roger Llopis, Fèlix Casanova, Luis E Hueso
We fabricated a C60 fullerene-based molecular spin-photovoltaic device that integrates a photovoltaic response with the spin transport across the molecular layer. The photovoltaic response can be modified under the application of a small magnetic field, with a magnetophotovoltage of up to 5% at room temperature. Device functionalities include a magnetic current inverter and the presence of diverging magnetocurrent at certain illumination levels that could be useful for sensing. Completely spin-polarized currents can be created by balancing the external partially spin-polarized injection with the photogenerated carriers...
August 18, 2017: Science
Lee A Solomon, Matthew E Sykes, Yimin A Wu, Richard D Schaller, Gary P Wiederrecht, Harry Christopher Fry
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains...
August 17, 2017: ACS Nano
E Tiguntseva, A Chebykin, A Ishteev, R Haroldson, B Balachandran, E Ushakova, F Komissarenko, H Wang, V Milichko, A Tsypkin, D Zuev, W Hu, S Makarov, A Zakhidov
Recently, hybrid halide perovskites have emerged as one of the most promising types of materials for thin-film photovoltaic and light-emitting devices because of their low-cost and potential for high efficiency. Further boosting their performance without detrimentally increasing the complexity of the architecture is critically important for commercialization. Despite a number of plasmonic nanoparticle based designs having been proposed for solar cell improvement, inherent optical losses of the nanoparticles reduce photoluminescence from perovskites...
August 17, 2017: Nanoscale
Argiris Laskarakis, Varvara Karagkiozaki, Despoina Georgiou, Christoforos Gravalidis, Stergios Logothetidis
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is among the most widely used polymers that are used as printed transparent electrodes for flexible Organic Electronic (OE) devices, such as Organic Photovoltaics (OPVs). The understanding of their optical properties and the correlation of the optical properties with their electronic properties and metallic-like behavior can lead to the optimization of their functionality as transparent electrodes in multilayer OE device architectures. In this work, we study the optical properties of different PEDOT:PSS formulations by non-destructive Spectroscopic Ellipsometry (SE), from the infrared to the far ultraviolet spectral regions...
August 17, 2017: Materials
Yohan Ko, Yeong Rim Kim, Haneol Jang, Chanyong Lee, Man Gu Kang, Yongseok Jun
We report the performance of perovskite solar cells (PSCs) with an electron transport layer (ETL) consisting of a SnO2 thin film obtained by electrochemical deposition. The surface morphology and thickness of the electrodeposited SnO2 films were closely related to electrochemical process conditions, i.e., the applied voltage, bath temperature, and deposition time. We investigated the performance of PSCs based on the SnO2 films. Remarkably, the experimental factors that are closely associated with the photovoltaic performance were strongly affected by the SnO2 ETLs...
August 16, 2017: Nanoscale Research Letters
Yue Jiang, Magali Allain, Denis Gindre, Sylvie Dabos-Seignon, Philippe Blanchard, Clément Cabanetos, Jean Roncali
The synthesis of a molecule constituted of two diarylamine-based push-pull chromophores covalently linked via their nitrogen atom is described. Comparison of the electronic properties with the parent monomer shows that dimerization has negligible influence on the electronic properties of the molecule but exerts a dramatic impact on the capacity of the material to self-reorganize. Application of thermal annealing to thin films induces the crystallization under original morphologies, a process accompanied by a partial bleaching of the absorption in the visible range and by a huge increase of hole-mobility...
August 16, 2017: Scientific Reports
Sharada Govinda, Bhushan P Kore, Menno Bokdam, Pratibha Mahale, Abhinav Kumar, Somnath Pal, Biswajit Bhattacharyya, Jonathan Lahnsteiner, Georg Kresse, Cesare Franchini, Anshu Pandey, D D Sarma
Dielectric constants of MAPbX3 (X = Br, I) in the 1 kHz-1 MHz range show strong temperature dependence near room temperature, in contrast to the nearly temperature-independent dielectric constant of CsPbBr3. This strong temperature dependence for MAPbX3 in the tetragonal phase is attributed to the MA(+) dipoles rotating freely within the probing time scale. This interpretation is supported by ab initio molecular dynamics simulations on MAPbI3 that establish these dipoles as randomly oriented with a rotational relaxation time scale of ∼7 ps at 300 K...
August 18, 2017: Journal of Physical Chemistry Letters
Bimalendu Adhikari, Xu Lin, Mitsuaki Yamauchi, Hayato Ouchi, Keisuke Aratsu, Shiki Yagai
Hydrogen-bonded supermacrocycles (rosettes) are attractive disk-shaped noncovalent synthons for extended functional columnar nanoassemblies. They can serve not only as noncovalent monomer units for supramolecular polymers and discrete oligomers in a dilute solution but also as constituent entities for soft matters such as gels and lyotropic/thermotropic liquid crystals. However, what are the merits of using supramolecular rosettes instead of using expanded π-conjugated covalent molecules? This review covers the self-assembly of photochemically and electrochemically active π-conjugated molecules through the formation of supramolecular rosettes via directional complementary multiple hydrogen-bonding interactions...
August 16, 2017: Chemical Communications: Chem Comm
Jiangang He, Cesare Franchini
In this paper we assess the predictive power of the self-consistent hybrid functional scPBE0 in calculating the band gap of oxide semiconductors. The computational procedure is based on the self-consistent evaluation of the mixing parameter α by means of an iterative calculation of the static dielectric constant using the perturbation expansion after discretization (PEAD) method and making use of the relation α = 1/ε<sub>∞</sub>. Our materials dataset is formed by 30 compounds covering a wide range of band gaps and dielectric properties, and includes materials with a wide spectrum of application as thermoelectrics, photocatalysis, photovoltaics, transparent conducting oxides, and refractory materials...
August 16, 2017: Journal of Physics. Condensed Matter: An Institute of Physics Journal
Subir Kumar Biswas, Hironari Sano, Md Iftekhar Shams, Hiroyuki Yano
Achieving structural hierarchy and a uniform nanofiller dispersion simultaneously remains highly challenging for obtaining a robust polymer nanocomposite of immiscible components. In this study, a remarkably facile Pickering emulsification approach is developed to fabricate hierarchical composites of immiscible acrylic polymer and native cellulose nanofibers by taking advantage of the dual role of the nanofibers as both the emulsion stabilizer and polymer reinforcement. The composites feature a unique "reverse" nacre-like microstructure reinforced with well-dispersed two-tier hierarchical nanofiber network, leading to a synergistic high strength, modulus, and toughness (20, 50, and 53 times that of neat polymer, respectively), high optical transparency (89%), high flexibility and a drastically low thermal expansion (13 ppm/K, 1/15th of the neat polymer)...
August 16, 2017: ACS Applied Materials & Interfaces
Xinwei Chen, Si-Lu Tao, Cong Fan, Dongcheng Chen, Ling Zhou, Hui Lin, Cai-Jun Zheng, Shi-Jian Su
Ternary bulk heterojunction (BHJ) is a brilliant photovoltaic technology for improving the performance of organic solar cells (OSCs), since the light absorption range can be significantly extended by using multiple donors or acceptor materials. In this paper, coumarin7 (C7), a small organic molecule typical led used in organic light-emitting diodes, was initially exploited as second electron-donor component in ternary bulk heterojunction OSCs along with conventional blend system spolythieno[3,4-b]-thiophene/benzodithiophene(PTB7) and [6,6]-phenyl-C71 -butyric acid methyl(PC71 BM)...
August 15, 2017: ACS Applied Materials & Interfaces
Honghui Sun, Tian Jiang, Yunyi Zang, Xin Zheng, Yan Gong, Yong Yan, Zhongjie Xu, Yu Liu, Liang Fang, Xiang'ai Cheng, Ke He
Correction for 'Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures' by Honghui Sun, et al., Nanoscale, 2017, 9, 9325-9332.
August 15, 2017: Nanoscale
Giselle A Elbaz, Wee-Liat Ong, Evan Ambrose Doud, Philip Kim, Daniel W Paley, Xavier Roy, Jonathan A Malen
Thermal management plays a critical role in the design of solid state materials for energy conversion. Lead halide perovskites have emerged as promising candidates for photovoltaic, thermoelectric and optoelectronic applications but their thermal properties are still poorly understood. Here we report on the thermal conductivity, elastic modulus, and sound speed of a series of lead halide perovskites MAPbX3 (X = Cl, Br, I), CsPbBr3, and FAPbBr3 (MA = methylammonium, FA = formamidinium). Using frequency domain thermoreflectance, we find that the thermal conductivities of single crystal lead halide perovskites range from 0...
August 14, 2017: Nano Letters
Qian Zhang, Jieqiong Hu, Diyuan Zheng, Anhua Dong, Hui Wang
We report a large magnetically tuned lateral photovoltaic effect (LPE) observed in nanoscale Co-SiO2-Si structures. This tunable effect strongly depends on the location of two electrodes. The change ratio of lateral photovoltage (LPV) can reach up to a considerable value of 94.15% under external magnetic field of 1.77 Teslas. This phenomenon is mainly ascribed to the asymmetric Lorentz force acting on the photo-current in the region of edge area of the nanostructure. It adds a new functionality to the traditional LPE-based devices, and provides a potential prospect for the development of multifunctional high-sensitive photoelectric devices or sensors...
August 14, 2017: Nanotechnology
Carlito S Ponseca, Pavel Chábera, Jens Uhlig, Petter Persson, Villy Sundström
Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted...
August 14, 2017: Chemical Reviews
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"