Read by QxMD icon Read

Bacteria secretion system

Coral González-Prieto, Cammie F Lesser
Transkingdom secretion systems that bacteria use to inject proteins directly into the cytosol of mammalian host cells play an essential role in the virulence of many Gram-negative bacterial pathogens. Current efforts are underway to repurpose these machines as novel therapeutics; type III secretion systems as vectors for the delivery of proteins of therapeutic value including heterologous antigens for vaccine development and type IV secretion systems as vectors for DNA. While initial studies focused on the use of attenuated or replication incompetent pathogens, the recent development of non-pathogenic Escherichia coli that encode programmable type III secretion systems expands possibilities for the in vivo directed delivery of therapeutic payloads...
November 12, 2017: Current Opinion in Microbiology
Gilliard Lach, Harriet Schellekens, Timothy G Dinan, John F Cryan
The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling...
November 13, 2017: Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics
Sathish Rajamani, Richard Sayre
Intercellular small-molecular-weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum-sensing molecules. These molecules mediate a variety of population-dependent responses including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules have important practical implications...
2018: Methods in Molecular Biology
Alix M Denoncourt, Valérie E Paquet, Steve J Charette
Mycobacteria are widespread microorganisms that live in various environments, including man-made water systems where they cohabit with protozoa. Environmental mycobacterial species give rise to many opportunistic human infections and can infect phagocytic protozoa. Protozoa such as amoebae and ciliates feeding on bacteria can sometimes get rid of non-digestible or pathogenic material by packaging it into secreted fecal pellets. Usually, packaged bacteria are still viable and are protected against chemical and physical stresses...
November 6, 2017: FEMS Microbiology Letters
Paula Renata Alves da Silva, Jean Luiz Simões-Araújo, Márcia Soares Vidal, Leonardo Magalhães Cruz, Emanuel Maltempi de Souza, José Ivo Baldani
Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST...
October 18, 2017: Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology]
Ignacio L B Munguira, Hirohide Takahashi, Ignacio Casuso, Simon Scheuring
Pore-forming toxins form a family of proteins that act as virulence factors of pathogenic bacteria, but similar proteins are found in all kingdoms of life, including the vertebrate immune system. They are secreted as soluble monomers that oligomerize on target membranes in the so-called prepore state; after activation, they insert into the membrane and adopt the pore state. Lysenin is a pore-forming toxin from the earthworm Eisenida foetida, of which both the soluble and membrane-inserted structures are solved...
November 7, 2017: Biophysical Journal
Jin-Hua Tao, Jin-Ao Duan, Shu Jiang, Nan-Nan Feng, Wen-Qian Qiu, Yong Ling
The gut microflora dysbiosis has been closely related with the inflammatory bowel disease (IBD). In this study, the effect of polysaccharides from Chrysanthemum morifolium Ramat on the gut microbiota was evaluated by ulcerative colitis (UC) rat model. Physiological and pathological analyses suggested that Chrysanthemum polysaccharides possessed notably protective effects on UC in vivo. Based on the Illumina MiSeq platform, 16S rRNA sequencing of the rat colonic contents indicated that the intestinal flora structure remarkably changed in the model rats and the tendency was alleviated to a certain degree by treatment with different dosages of Chrysanthemum polysaccharides...
October 6, 2017: Oncotarget
Ximing Chen, Juan Li, Haili Sun, Shiweng Li, Tuo Chen, Guangxiu Liu, Paul Dyson
Drug resistance is a major problem in antibacterial chemotherapy. Apidaecins, which refer to a series of small, proline-rich antimicrobial peptides, are predominantly active against many drug-resistant bacteria. The apidaecins have special antibacterial mechanisms, and are non-toxic for human cells, a prerequisite for using them as novel antibiotic drugs. However, no efficient non-tagged apidaecin expression system has been reported, which is the limiting factor for their application. Here we successfully generated a Pichia pastoris transformant expressing and secreting apidaecin...
November 6, 2017: Scientific Reports
Koji Nakayama
Many bacteria symbiotic and parasitic in humans are included in the genera Bacteroides, Prevotella, Porphyromonas and others, which belong to the phylum Bacteroidetes. We have been studying gingipain, a major secretory protease of Porphyromonas gingivalis which is a periodontopathogenic bacterium belonging to the genus Porphyromonas, and pili which contribute to host colonization in the bacterium. In the process, it was found that gingipain was secreted by a system not reported previously. Furthermore, this secretion system was found to exist widely in the Bacteroidetes phylum bacteria and closely related to the gliding motility of bacteroidete bacteria, and it was named the Por secretion system (later renamed the type IX secretion system)...
2017: Nihon Saikingaku Zasshi. Japanese Journal of Bacteriology
Joseph J Johnston, Abhishek Shrivastava, Mark J McBride
Flavobacterium johnsoniae exhibits rapid gliding motility over surfaces. At least twenty genes are involved in this process. Seven of these, gldK, gldL, gldM, gldN, sprA, sprE, and sprT encode proteins of the type IX protein secretion system (T9SS). The T9SS is required for surface localization of the motility adhesins SprB and RemA, and for secretion of the soluble chitinase ChiA. Here we demonstrate that the gliding motility proteins GldA, GldB, GldD, GldF, GldH, GldI and GldJ are also essential for secretion...
November 6, 2017: Journal of Bacteriology
Miriam Hiller, Christina Lang, Wiebke Michel, Antje Flieger
Legionella pneumophila is an intracellular pathogen and the main causative agent of Legionnaires' disease, a potentially fatal pneumonia. The bacteria infect both mammalian cells and environmental hosts, such as amoeba. Inside host cells, the bacteria withstand the multifaceted defenses of the phagocyte and replicate within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). For establishment and maintenance of the infection, L. pneumophila secretes many proteins including effector proteins by means of different secretion systems and outer membrane vesicles...
October 28, 2017: International Journal of Medical Microbiology: IJMM
Erik Bakkeren, Tamas Dolowschiak, Médéric R J Diard
To understand how bacteria evolve and adapt to their environment, it can be relevant to monitor phenotypic changes that occur in a population. Single cell level analyses and sorting of mutant cells according to a particular phenotypic readout can constitute efficient strategies. However, when the phenotype of interest is expressed heterogeneously in ancestral isogenic populations of cells, single cell level sorting approaches are not optimal. Phenotypic heterogeneity can for instance make no-expression mutant cells indistinguishable from a subpopulation of wild-type cells transiently not expressing the phenotype...
2017: Frontiers in Microbiology
Ya Zhang, Masaaki Kitajima, Andrew J Whittle, Wen-Tso Liu
The occurrence of pathogenic bacteria in drinking water distribution systems (DWDSs) is a major health concern, and our current understanding is mostly related to pathogenic species such as Legionella pneumophila and Mycobacterium avium but not to bacterial species closely related to them. In this study, genomic-based approaches were used to characterize pathogen-related species in relation to their abundance, diversity, potential pathogenicity, genetic exchange, and distribution across an urban drinking water system...
2017: Frontiers in Microbiology
Albert Goldbeter
Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms...
October 2017: Chaos
Nicky O'Boyle, James P R Connolly, Andrew J Roe
Type 3 secretion systems (T3SS) form an integral part of the arsenal of many pathogenic bacteria. These injection machines, together with their cargo of subversive effector proteins are capable of manipulating the cellular environment of the host in order to ensure persistence of the pathogen. In order to fully appreciate the functions of Type 3 effectors it is necessary to gain spatio-temporal knowledge of each effector during the process of infection. A number of genetic modifications have been exploited in order to reveal effector protein secretion, translocation and subsequent activity and localisation within host cells...
October 31, 2017: Cellular Microbiology
Ashish Gupta, Renesh Bedre, Sudarshan Singh Thapa, Afsana Sabrin, Guannan Wang, Maheshi Dassanayake, Anne Grove
Many bacteria encode biosynthetic proteins that produce a vast array of natural products. These compounds are often synthesized during host invasion as they function as virulence factors. In addition, such secondary metabolites have yielded numerous molecular scaffolds with pharmaceutical and clinical importance. The gene clusters that encode proteins responsible for synthesis of these compounds are typically silenced or "cryptic" under laboratory growth conditions, hampering discovery of novel lead compounds...
November 8, 2017: ACS Chemical Biology
Iain D Hay, Matthew J Belousoff, Rhys A Dunstan, Rebecca S Bamert, Trevor Lithgow
The β-barrel assembly machinery (BAM) complex is the core machinery for the assembly of β-barrel membrane proteins, and inhibition of BAM complex activity is lethal to bacteria. Discovery of integral membrane proteins that are key to pathogenesis yet do not require assistance from the BAM complex raises the question of how these proteins assemble into bacterial outer membranes. Here we address this question through a structural analysis of the type 2 secretion system (T2SS) secretin from enteropathogenic Escherichia coli O127:H6 strain E2348/69...
October 30, 2017: Journal of Bacteriology
Puneet Puri, Suthat Liangpunsakul, Jeffrey E Christensen, Vijay H Shah, Patrick S Kamath, Gregory J Gores, Susan Walker, Megan Comerford, Barry Katz, Andrew Borst, Qigui Yu, Divya P Kumar, Faridoddin Mirshahi, Svetlana Radaeva, Naga P Chalasani, David W Crabb, Arun J Sanyal
Intestinal dysbiosis is implicated in alcoholic hepatitis (AH). However, changes in the circulating microbiome, its association with the presence and severity of AH and its functional relevance in AH is unknown. Qualitative and quantitative assessment of changes in the circulating microbiome were performed by sequencing bacterial DNA in subjects with moderate (n=18) or severe AH (n=19). These data were compared to heavy drinking controls (HDC) without obvious liver disease (n=19) and non-alcohol consuming controls (NAC, n=20)...
October 30, 2017: Hepatology: Official Journal of the American Association for the Study of Liver Diseases
Erin C Garcia
Both Gram-negative and Gram-positive organisms harbor systems for delivering toxins to neighboring bacteria upon direct cell contact. These systems, typified by type VI secretion (T6S) and contact-dependent growth inhibition (CDI) systems, are defined by their ability to mediate interbacterial competition in vitro, while their biological roles have remained uncertain. Recent research into the mechanisms of toxin delivery and activity, as well as investigation of contact-dependent toxin function during relevant biological processes, has offered insight into how interbacterial competition might work outside of the laboratory...
October 24, 2017: Current Opinion in Microbiology
Laurie Pinaud, Mariana L Ferrari, Robin Friedman, Nico Jehmlich, Martin von Bergen, Armelle Phalipon, Philippe J Sansonetti, François-Xavier Campbell-Valois
Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated...
2017: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"