Read by QxMD icon Read

neuronal oscillations

Thomas Burwick, Alexandros Bouras
The communication-through-coherence (CTC) hypothesis states that a sending group of neurons will have a particularly strong effect on a receiving group if both groups oscillate in a phase-locked ("coherent") manner (Fries, 2005, 2015). Here, we consider a situation with two visual stimuli, one in the focus of attention and the other distracting, resulting in two sites of excitation at an early cortical area that project to a common site in a next area. Taking a modeler's perspective, we confirm the workings of a mechanism that was proposed by Bosman et al...
October 20, 2016: Neural Computation
Yasuhide Yoshitake, Hiroaki Kanehisa, Minoru Shinohara
PURPOSE: The purpose of this study was to determine the modulation of common low-frequency oscillations in pools of motor units across antagonistic muscles due to the difference in the activation level of pools of spinal motor neurons and the presence of neuromuscular fatigue during intended co-contraction. METHODS: Ten healthy young men (21.8 ± 1.5 yr) performed intended steady co-contractions of elbow flexors and extensors at maximal and a submaximal (10% of maximal electromyogram, EMG) effort...
October 6, 2016: Medicine and Science in Sports and Exercise
Stefano Schiaffino, Bert Blaauw, Kenneth A Dyar
The circadian oscillations of muscle genes are controlled either directly by the intrinsic muscle clock or by extrinsic factors, such as feeding, hormonal signals, or neural influences, which are in turn regulated by the central pacemaker, the suprachiasmatic nucleus of the hypothalamus. A unique feature of circadian rhythms in skeletal muscle is motor neuron-dependent contractile activity, which can affect the oscillation of a number of muscle genes independently of the muscle clock. The role of the intrinsic muscle clock has been investigated using different Bmal1 knockout (KO) models...
2016: Skeletal Muscle
Dan Denis, Richard Rowe, A Mark Williams, Elizabeth Milne
The human mirror neuron system is believed to play an important role in facilitating the ability of athletes to anticipate the actions of an opponent. This system is often assessed with EEG by measuring event-related changes in mu (8-13Hz) sensorimotor oscillations. However, traditional channel-based analyses of this measure are flawed in that due to volume conduction effects mu and non-mu alpha activity can become mixed. This flaw means it is unclear the extent to which mu activity indexes the mirror system, as opposed to other processes such as attentional demand...
October 13, 2016: NeuroImage
Douglas McLelland, Rufin VanRullen
Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles...
October 2016: PLoS Computational Biology
Malini Riddle, Erica Mezias, Duncan Foley, Joseph LeSauter, Rae Silver
The hypothalamic suprachiasmatic nucleus (SCN), locus of the master circadian clock, bears many neuronal types. At the cellular-molecular level, the clock is comprised of feedback loops involving "clock" genes including Period1 and Period2, and their protein products, PERIOD1 and PERIOD2 (PER1/2). In the canonical model of circadian oscillation, the PER1/2 proteins oscillate together. While their rhythmic expression in the SCN as a whole has been described, the possibility of regional differences is unknown...
October 14, 2016: European Journal of Neuroscience
Jinjie Zhu, Chen Kong, Xianbin Liu
We study the subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model. For the subthreshold situation, two cases where the stationary states are equilibrium point and limit cycle are considered, where different natures of vibrational resonance are observed via theoretical and numerical methods. Especially when the frequency of the high-frequency driving force is near the so-called canard-resonance frequency, the firing rate can be significantly enhanced at the presence of noise...
September 2016: Physical Review. E
Irmantas Ratas, Kestutis Pyragas
We analyze the dynamics of a large network of coupled quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The network is heterogeneous in that it includes both inherently spiking and excitable neurons. The coupling is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rate and the mean membrane potential, which are exact in the infinite-size limit...
September 2016: Physical Review. E
Calvin Zhang, Timothy J Lewis
Many neuronal circuits driving coordinated locomotion are composed of chains of half-center oscillators (HCOs) of various lengths. The HCO is a common motif in central pattern generating circuits (CPGs); an HCO consists of two neurons, or two neuronal populations, connected by reciprocal inhibition. To maintain appropriate motor coordination for effective locomotion over a broad range of frequencies, chains of CPGs must produce approximately constant phase-differences in a robust manner. In this article, we study phase-locking in chains of nearest-neighbor coupled HCOs and examine how the circuit architecture can promote phase-constancy, i...
October 13, 2016: Journal of Mathematical Biology
Hannah Bos, Markus Diesmann, Moritz Helias
Oscillations are omnipresent in neural population signals, like multi-unit recordings, EEG/MEG, and the local field potential. They have been linked to the population firing rate of neurons, with individual neurons firing in a close-to-irregular fashion at low rates. Using a combination of mean-field and linear response theory we predict the spectra generated in a layered microcircuit model of V1, composed of leaky integrate-and-fire neurons and based on connectivity compiled from anatomical and electrophysiological studies...
October 2016: PLoS Computational Biology
Jessica A Cardin
γ oscillations (20-80 Hz) are associated with sensory processing, cognition, and memory, and focused attention in animals and humans. γ activity can arise from several neural mechanisms in the cortex and hippocampus and can vary across circuits, behavioral states, and developmental stages. γ oscillations are nonstationary, typically occurring in short bouts, and the peak frequency of this rhythm is modulated by stimulus parameters. In addition, the participation of excitatory and inhibitory neurons in the γ rhythm varies across local circuits and conditions, particularly in the cortex...
October 12, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Vikaas S Sohal
γ oscillations, which can be identified by rhythmic electrical signals ∼30-100 Hz, consist of interactions between excitatory and inhibitory neurons that result in rhythmic inhibition capable of entraining firing within local cortical circuits. Many possible mechanisms have been described through which γ oscillations could act on cortical circuits to modulate their responses to input, alter their patterns of activity, and/or enhance the efficacy of their outputs onto downstream targets. Recently, several studies have observed changes in behavior after optogenetically manipulating neocortical γ oscillations...
October 12, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Naomi Onisawa, Hiroyuki Manabe, Kensaku Mori
During slow-wave sleep, inter-areal communications via coordinated slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave activity during slow-wave sleep, we examined whether OC sharp-waves in freely behaving rats occur in temporal coordination with up- and down-states of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the down-state in the OFC, the OC also exhibited down-state with greatly reduced neuronal activity and suppression of sharp-wave generation...
October 12, 2016: Journal of Neurophysiology
Shaul Mezan, Jean Daniel Feuz, Bart Deplancke, Sebastian Kadener
Circadian clocks generate 24-hr rhythms in physiology and behavior. Despite numerous studies, it is still uncertain how circadian rhythms emerge from their molecular and neural constituents. Here, we demonstrate a tight connection between the molecular and neuronal circadian networks. Using fluorescent transcriptional reporters in a Drosophila ex vivo brain culture system, we identified a reciprocal negative regulation between the master circadian regulator CLK and expression of pdf, the main circadian neuropeptide...
October 11, 2016: Cell Reports
Laura D Lewis, Kawin Setsompop, Bruce R Rosen, Jonathan R Polimeni
Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity...
October 11, 2016: Proceedings of the National Academy of Sciences of the United States of America
Ryota Nakazato, Shogo Hotta, Daisuke Yamada, Miki Kou, Saki Nakamura, Yoshifumi Takahata, Hajime Tei, Rika Numano, Akiko Hida, Shigeki Shimba, Michihiro Mieda, Eiichi Hinoi, Yukio Yoneda, Takeshi Takarada
Similar to neurons, microglia have an intrinsic molecular clock. The master clock oscillator Bmal1 modulates interleukin-6 upregulation in microglial cells exposed to lipopolysaccharide. Bmal1 can play a role in microglial inflammatory responses. We previously demonstrated that gliotransmitter ATP induces transient expression of the clock gene Period1 via P2X7 purinergic receptors in cultured microglia. In this study, we further investigated mechanisms underlying the regulation of pro-inflammatory cytokine production by clock molecules in microglial cells...
October 11, 2016: Glia
Dimitris A Pinotsis, Roman Loonis, Andre M Bastos, Earl K Miller, Karl J Friston
Neural rhythms or oscillations are ubiquitous in neuroimaging data. These spectral responses have been linked to several cognitive processes; including working memory, attention, perceptual binding and neuronal coordination. In this paper, we show how Bayesian methods can be used to finesse the ill-posed problem of reconstructing-and explaining-oscillatory responses. We offer an overview of recent developments in this field, focusing on (i) the use of MEG data and Empirical Bayes to build hierarchical models for group analyses-and the identification of important sources of inter-subject variability and (ii) the construction of novel dynamic causal models of intralaminar recordings to explain layer-specific activity...
October 7, 2016: Brain Topography
Nadia Kafui Adotevi, Beulah Leitch
Absence seizures arise from disturbances within the corticothalamocortical network, however the precise cellular and molecular mechanisms underlying seizure generation arising from different genetic backgrounds are not fully understood. While recent experimental evidence suggests that changes in inhibitory microcircuits in the cortex may contribute to generation of the hallmark spike-wave discharges, it is still unclear if altered cortical inhibition is a result of interneuron dysfunction due to compromised glutamatergic excitation and/or changes in cortical interneuron number...
October 4, 2016: Neuroscience
Pia Maier, Martin E Kaiser, Valery Grinevich, Andreas Draguhn, Martin Both
The hypothalamic neuropeptide oxytocin (OT) controls childbirth and lactation, is involved in social behaviors, plays a role in various psychiatric disorders, and has effects on learning and memory. Although behavioral effects of OT have been extensively studied, much less is known about its effects on neuronal and network activity patterns. Here, we investigate the effect of OT on two major patterns of hippocampal network activity in mouse hippocampal slices. We studied different in vitro models of gamma-frequency oscillations and sharp wave-ripple complexes (SPW-R), two patterns implicated in spatial memory formation and memory consolidation respectively...
September 26, 2016: European Journal of Neuroscience
Anna Dora Manca, Mirko Grimaldi
Speech sound perception is one of the most fascinating tasks performed by the human brain. It involves a mapping from continuous acoustic waveforms onto the discrete phonological units computed to store words in the mental lexicon. In this article, we review the magnetoencephalographic studies that have explored the timing and morphology of the N1m component to investigate how vowels and consonants are computed and represented within the auditory cortex. The neurons that are involved in the N1m act to construct a sensory memory of the stimulus due to spatially and temporally distributed activation patterns within the auditory cortex...
2016: Frontiers in Psychology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"