Read by QxMD icon Read

Layer 5 neuron

Aggeliki Giannakopoulou, George A Lyras, Nikolaos Grigoriadis
Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of chronic inflammation remains controversial. In this study the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis was used to investigate the long-term effects of T cell-mediated central nervous system inflammation on hippocampal neurogenesis. 5-Bromodeoxyuridine (BrdU)-labeled subpopulations of hippocampal cells in EAE and control mice (coexpressing GFAP, doublecortin, NeuN, calretinin, and S100) were quantified at the recovery phase, 21 days after BrdU administration, to estimate alterations on the rate and differentiation pattern of the neurogenesis process...
October 26, 2016: Journal of Neuroscience Research
H Sawahata, S Yamagiwa, A Moriya, T Dong, H Oi, Y Ando, R Numano, M Ishida, K Koida, T Kawano
Investigations into mechanisms in various cortical areas can be greatly improved and supported by stable recording of single neuronal activity. In this study, fine silicon wire electrodes (diameter 3 μm, length 160 μm) are fabricated by vapor-liquid-solid (VLS) growth with the aim of stabilizing recording and reducing the invasiveness on the measurement procedure. The electrode is fabricated on a modular 1 ×  1 mm(2) conductive silicon block that can be assembled into a number of different device packages, for example on rigid or flexible printed circuit boards (PCB)...
October 25, 2016: Scientific Reports
M S Rahnama'i, B T Biallosterski, Ph E V Van Kerrebroeck, G A van Koeveringe, J I Gillespie, S G de Wachter
AIM: Increased afferent fibre activity contributes to pathological conditions such as the overactive bladder syndrome. Nerve fibres running near the urothelium are considered to be afferent as no efferent system has yet been described. The aim of this study was to identify sub-types of afferent nerve fibres in the mouse bladder wall based on morphological criteria and analyse regional differences. MATERIALS AND METHODS: 27 bladders of six month old C57BL/6 mice were removed and tissues were processed for immunohistochemistry...
October 20, 2016: Journal of Chemical Neuroanatomy
Ebrahim Alipanahpour Dil, Mehrorang Ghaedi, Arash Asfaram
The present research is focused on the synthesis and characterization of zinc (II) oxide nanorods loaded on activated carbon (ZnO-NRs-AC) to prepare an outstanding adsorbent for the simultaneous adsorption of heavy metals and dyes as hazardous pollutant using ultrasound energy. The adsorbent was identified by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. The individual effects and possible interactions between the most effective variables including initial metal ions (Cd(2+) and Co(2+)) and azo dyes (methylene blue (MB) and crystal violet (CV)) concentration, adsorbent dosage and ultrasonic time on the responses were investigated by response surface methodology (RSM) and optimum conditions was fixed at Cd(2+), Co(2+), MB and CV concentrations were 25, 24, 18 and 14mgL(-1), respectively, 0...
January 2017: Ultrasonics Sonochemistry
George Taylor-Walker, Savannah A Lynn, Eloise Keeling, Rosie Munday, David A Johnston, Anton Page, Jennifer A Scott, Srini Goverdhan, Andrew J Lotery, J Arjuna Ratnayaka
Age-related Macular Degeneration (AMD) is a common, irreversible blinding condition that leads to the loss of central vision. AMD has a complex aetiology with both genetic as well as environmental risks factors, and share many similarities with Alzheimer's disease. Recent findings have contributed significantly to unravelling its genetic architecture that is yet to be matched by molecular insights. Studies are made more challenging by observations that aged and AMD retinas accumulate the highly pathogenic Alzheimer's-related Amyloid beta (Aβ) group of peptides, for which there appears to be no clear genetic basis...
October 14, 2016: Experimental Eye Research
Hannah Bos, Markus Diesmann, Moritz Helias
Oscillations are omnipresent in neural population signals, like multi-unit recordings, EEG/MEG, and the local field potential. They have been linked to the population firing rate of neurons, with individual neurons firing in a close-to-irregular fashion at low rates. Using a combination of mean-field and linear response theory we predict the spectra generated in a layered microcircuit model of V1, composed of leaky integrate-and-fire neurons and based on connectivity compiled from anatomical and electrophysiological studies...
October 2016: PLoS Computational Biology
Andrew M Wright, Agustin Zapata, Michael H Baumann, Joshua S Elmore, Alexander F Hoffman, Carl R Lupica
Clinical descriptions of cocaine addiction include compulsive drug seeking and maladaptive decision-making despite substantial aversive consequences. Research suggests that this may result from altered orbitofrontal cortex (OFC) function and its participation in outcome-based behavior. Clinical and animal studies also implicate serotonin in the regulation of OFC function in addiction and other neuropsychiatric disorders. Here we test the hypothesis that exposure to cocaine, through self-administration (CSA) or yoked-administration (CYA), alters the regulation of OFC function by 5-HT...
October 12, 2016: Cerebral Cortex
Y Horiuchi, M A Kondo, K Okada, Y Takayanagi, T Tanaka, T Ho, M Varvaris, K Tajinda, H Hiyama, K Ni, C Colantuoni, D Schretlen, N G Cascella, J Pevsner, K Ishizuka, A Sawa
Cognitive impairment is a key feature of schizophrenia (SZ) and determines functional outcome. Nonetheless, molecular signatures in neuronal tissues that associate with deficits are not well understood. We conducted nasal biopsy to obtain olfactory epithelium from patients with SZ and control subjects. The neural layers from the biopsied epithelium were enriched by laser-captured microdissection. We then performed an unbiased microarray expression study and implemented a systematic neuropsychological assessment on the same participants...
October 11, 2016: Translational Psychiatry
Kenji W Koyano, Masaki Takeda, Teppei Matsui, Toshiyuki Hirabayashi, Yohei Ohashi, Yasushi Miyashita
The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task...
September 27, 2016: Neuron
Takako Kita, Naoki Shigematsu, Hitoshi Kita
Projections from the posterior intralaminar thalamic nuclei and the superior colliculus (SC) to the subthalamic nucleus (STN) and the zona incerta (ZI) have been described in the primate and rodent. The aims of this study was to investigate several questions on these projections, using modern neurotracing techniques in rats, to advance our understanding of the role of STN and ZI. We examined whether projection patterns to the subthlamus can be used to identify homologues of the primate centromedian (CM) and the parafascicular nucleus (Pf) in the rodent, the topography of the projection including what percent of intralaminar neurons participate in the projections, and electron microscopic examination of intralaminar synaptic boutons in STN...
September 26, 2016: European Journal of Neuroscience
Guy Eyal, Matthijs B Verhoog, Guilherme Testa-Silva, Yair Deitcher, Johannes C Lodder, Ruth Benavides-Piccione, Juan Morales, Javier DeFelipe, Christiaan Pj de Kock, Huibert D Mansvelder, Idan Segev
The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm(2), half of the commonly accepted 'universal' value (~1 µF/cm(2)) for biological membranes...
October 6, 2016: ELife
A Łukomska, I Baranowska-Bosiacka, M Budkowska, A Pilutin, M Tarnowski, K Dec, B Dołęgowska, E Metryka, D Chlubek, I Gutowska
Sphingolipids are the main components of the lipid membrane. They also perform structural functions and participate in many signal transmission processes. One of the bioactive sphingolipids is sphingosine-1-phosphate (S1P), a ligand for five G protein-coupled receptors (S1PRs1-5), which can also act as an intracellular second messenger. S1P is responsible for the stimulation of progenitor cells in the brain, but it can also induce apoptosis of mature neurons. This study is aimed at assessing the effect of pre- and neonatal exposure to permissible Pb concentrations on S1P levels and S1PR1 (EDG1) expression in the prefrontal cortex, cerebellum, and hippocampus of rats...
January 2017: Chemosphere
C N J Meunier, J-M Cancela, P Fossier
Psychiatric disorders are associated with excitation-inhibition (E-I) balance impairment in the prefrontal cortex. However, how the E-I balance is regulated is poorly known. The E-I balance of neuronal networks is linked to the action of numerous neuromodulators such as dopamine and 5-HT. We investigated the role of D2-receptors in tuning the E-I balance in a mouse model of anxiety, the 5-HT1A-receptor KO mice. We focused on synaptic plasticity of excitation and inhibition on layer 5 pyramidal neurons. We show that D2-receptor activation decreases the excitation and favors HFS-induced LTD of excitatory synapses via the activation of GSK3β...
September 25, 2016: Neuropharmacology
Carine Jaafar, Saad Omais, Sawsan Al Lafi, Nadim El Jamal, Mohammad Noubani, Larissa Skaf, Noël Ghanem
The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB)...
2016: Frontiers in Molecular Neuroscience
Yoshihisa Ishihara, Takaichi Fukuda
The subiculum is the output component of the hippocampal formation and holds a key position in the neural circuitry of memory. Previous studies have demonstrated the subiculum's connectivity to other brain areas in detail; however, little is known regarding its internal structure. We investigated the cytoarchitecture of the temporal and mid-septotemporal parts of the subiculum using immunohistochemistry. The border between the CA1 region and subiculum was determined by both cytoarchitecture and zinc transporter 3 (ZnT3)-immunoreactivity (IR), whereas the border between the subiculum and presubiculum (PreS) was partially indicated by glutamate receptor 1 (GluR1)-IR...
September 21, 2016: Neuroscience
Akihiro Funamizu, Bernd Kuhn, Kenji Doya
Dynamic Bayesian inference allows a system to infer the environmental state under conditions of limited sensory observation. Using a goal-reaching task, we found that posterior parietal cortex (PPC) and adjacent posteromedial cortex (PM) implemented the two fundamental features of dynamic Bayesian inference: prediction of hidden states using an internal state transition model and updating the prediction with new sensory evidence. We optically imaged the activity of neurons in mouse PPC and PM layers 2, 3 and 5 in an acoustic virtual-reality system...
September 19, 2016: Nature Neuroscience
M Legrand, S Lam, I Anselme, C Gloaguen, C Ibanez, P Eriksson, P Lestaevel, C Dinocourt
The developing brain is known to be sensitive to uranium (U) and exposure to this element during postnatal brain development results in behavioral disorders in adulthood. Moreover, we have previously shown that U exposure during gestation and lactation affects neurogenesis, in particular neural cell proliferation and cell death. In this study, we investigated whether exposure to depleted U (DU) affects neuronal differentiation during prenatal and postnatal brain development. We assessed in situ expression of specific genes involved in neuronal differentiation and expression of neuronal protein markers...
September 14, 2016: Neurotoxicology
Rong-Jian Liu, Catharine Duman, Taro Kato, Brendan Hare, Dora Lopresto, Eunyoung Bang, Jeffery Burgdorf, Joseph Moskal, Jane Taylor, George Aghajanian, Ronald S Duman
GLYX-13 is a putative NMDA receptor modulator with glycine-site partial agonist properties that produces rapid antidepressant effects, but without the psychotomimetic side effects of ketamine. Studies were conducted to examine the molecular, cellular, and behavioral actions of GLYX-13 to further characterize the mechanisms underlying the antidepressant actions of this agent. The results demonstrate that a single dose of GLYX-13 rapidly activates the mTORC1 pathway in the prefrontal cortex (PFC), and that infusion of the selective mTORC1 inhibitor rapamycin into the medial PFC (mPFC) blocks the antidepressant behavioral actions of GLYX-13, indicating a requirement for mTORC1 similar to ketamine...
September 16, 2016: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
Tobias Bock, Greg J Stuart
Large conductance calcium-activated potassium channels (or BK channels) fulfil a multitude of roles in the central nervous system. At the soma of many neuronal cell types they control the speed of action potential (AP) repolarization and therefore they can have an impact on neuronal excitability. Due to their presence in nerve terminals they also regulate transmitter release. BK channels have also been shown to be present in the dendrites of some neurons where they can regulate the magnitude and duration of dendritic spikes...
2016: Frontiers in Cellular Neuroscience
Betty Freret-Hodara, Yi Cui, Amélie Griveau, Lisa Vigier, Yoko Arai, Jonathan Touboul, Alessandra Pierani
Loss of neurons in the neocortex is generally thought to result in a final reduction of cerebral volume. Yet, little is known on how the developing cerebral cortex copes with death of early-born neurons. Here, we tackled this issue by taking advantage of a transgenic mouse model in which, from early embryonic stages to mid-corticogenesis, abundant apoptosis is induced in the postmitotic compartment. Unexpectedly, the thickness of the mutant cortical plate at E18.5 was normal, due to an overproduction of upper layer neurons at E14...
September 12, 2016: Cerebral Cortex
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"