Read by QxMD icon Read

Drosophila circuits

David J Anderson
Goal-directed social behaviours such as mating and fighting are associated with scalable and persistent internal states of emotion, motivation, arousal or drive. How those internal states are encoded and coupled to behavioural decision making and action selection is not clear. Recent studies in Drosophila melanogaster and mice have identified circuit nodes that have causal roles in the control of innate social behaviours. Remarkably, in both species, these relatively small groups of neurons can influence both aggression and mating, and also play a part in the encoding of internal states that promote these social behaviours...
October 18, 2016: Nature Reviews. Neuroscience
John G Conboy
The Rbfox genes encode an ancient family of sequence-specific RNA binding proteins (RBPs) that are critical developmental regulators in multiple tissues including skeletal muscle, cardiac muscle, and brain. The hallmark of Rbfox proteins is a single high-affinity RRM domain, highly conserved from insects to humans, that binds preferentially to UGCAUG motifs at diverse regulatory sites in pre-mRNA introns, mRNA 3'UTRs, and pre-miRNAs hairpin structures. Versatile regulatory circuits operate on Rbfox pre-mRNA and mRNA to ensure proper expression of Rbfox1 protein isoforms, which then act on the broader transcriptome to regulate alternative splicing networks, mRNA stability and translation, and microRNA processing...
October 17, 2016: Wiley Interdisciplinary Reviews. RNA
Alex S Mauss, Alexander Borst
Drosophila has emerged as an important model organism for the study of the neural basis of behavior. Its main asset is the experimental accessibility of identified neurons by genetic manipulation and physiological recordings. Drosophila therefore offers the opportunity to reach an integrative understanding of the development and neural underpinnings of behavior at all processing stages, from sensing to motor control, in a single species. Here, we will provide an account of the procedures involved in recording the electrical potential of individual neurons in the visual system of adult Drosophila using the whole-cell patch-clamp method...
2016: Methods in Molecular Biology
Carlo Ng Giachello, Richard A Baines
Stability of neural circuits is reliant on homeostatic mechanisms that return neuron activity towards pre-determined and physiologically appropriate levels. Without these mechanisms, changes due to synaptic plasticity, ageing and disease may push neural circuits towards instability. Whilst widely documented, understanding of how and when neurons determine an appropriate activity level, the so-called set-point, remains unknown. Genetically tractable model systems have greatly contributed to our understanding of neuronal homeostasis and continue to offer attractive models to explore these additional questions...
October 6, 2016: Current Opinion in Neurobiology
Tihana Jovanic, Casey Martin Schneider-Mizell, Mei Shao, Jean-Baptiste Masson, Gennady Denisov, Richard Doty Fetter, Brett Daren Mensh, James William Truman, Albert Cardona, Marta Zlatic
Even a simple sensory stimulus can elicit distinct innate behaviors and sequences. During sensorimotor decisions, competitive interactions among neurons that promote distinct behaviors must ensure the selection and maintenance of one behavior, while suppressing others. The circuit implementation of these competitive interactions is still an open question. By combining comprehensive electron microscopy reconstruction of inhibitory interneuron networks, modeling, electrophysiology, and behavioral studies, we determined the circuit mechanisms that contribute to the Drosophila larval sensorimotor decision to startle, explore, or perform a sequence of the two in response to a mechanosensory stimulus...
October 5, 2016: Cell
Martin Y Peek, Gwyneth M Card
Neural circuits mediating visually evoked escape behaviors are promising systems in which to dissect the neural basis of behavior. Behavioral responses to predator-like looming stimuli, and their underlying neural computations, are remarkably similar across species. Recently, genetic tools have been applied in this classical paradigm, revealing novel non-cortical pathways that connect loom processing to defensive behaviors in mammals and demonstrating that loom encoding models from locusts also fit vertebrate neural responses...
October 3, 2016: Current Opinion in Neurobiology
Emilio Salazar-Gatzimas, Juyue Chen, Matthew S Creamer, Omer Mano, Holly B Mandel, Catherine A Matulis, Joseph Pottackal, Damon A Clark
Animals estimate visual motion by integrating light intensity information over time and space. The integration requires nonlinear processing, which makes motion estimation circuitry sensitive to specific spatiotemporal correlations that signify visual motion. Classical models of motion estimation weight these correlations to produce direction-selective signals. However, the correlational algorithms they describe have not been directly measured in elementary motion-detecting neurons (EMDs). Here, we employed stimuli to directly measure responses to pairwise correlations in Drosophila's EMD neurons, T4 and T5...
October 5, 2016: Neuron
Yuanlei Yue, Shanshan Ke, Wei Zhou, Jin Chang
Understanding information coding is important for resolving the functions of visual neural circuits. The motion vision system is a classic model for studying information coding as it contains a concise and complete information-processing circuit. In Drosophila, the axon terminals of motion-detection neurons (T4 and T5) project to the lobula plate, which comprises four regions that respond to the four cardinal directions of motion. The lobula plate thus represents a topographic map on a transverse plane. This enables us to study the coding of diagonal motion by investigating its response pattern...
2016: PloS One
Volker Berendes, Sasha N Zill, Ansgar Büschges, Till Bockemühl
In insects, the coordinated motor output required for walking is based on the interaction between local pattern-generating networks providing basic rhythmicity and leg sensory signals which modulate this output on a cycle-to-cycle basis. How this interplay changes speed-dependently and thereby gives rise to the different coordination patterns observed at different speeds is understood insufficiently. Here, we used amputation to reduce sensory signals in single legs and decouple them mechanically during walking in Drosophila...
September 29, 2016: Journal of Experimental Biology
Shuang Qiu, Chengfeng Xiao, R Meldrum Robertson
There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis...
2016: PloS One
Randall Michael Golovin, Kendal Broadie
Evidence accumulating over the past 15 years refutes the dogma that the Drosophila nervous system is hardwired. The preponderance of studies reveals activity-dependent neural circuit refinement driving the optimization of behavioral outputs. Here, we describe developmental, sensory input-dependent plasticity in the brain olfactory antennal lobe that we term long-term central adaption (LTCA). LTCA is evoked by prolonged exposure to an odorant during the first week of post-eclosion life, resulting in a persistent decreased response to aversive odors and enhanced response to attractive odors...
September 28, 2016: Journal of Neurophysiology
David S Garbe, Abigail S Vigderman, Emilia Moscato, Abigail E Dove, Christopher G Vecsey, Matthew S Kayser, Amita Sehgal
Female Drosophila melanogaster, like many other organisms, exhibit different behavioral repertoires after mating with a male. These postmating responses (PMRs) include increased egg production and laying, increased rejection behavior (avoiding further male advances), decreased longevity, altered gustation and decreased sleep. Sex Peptide (SP), a protein transferred from the male during copulation, is largely responsible for many of these behavioral responses, and acts through a specific circuit to induce rejection behavior and alter dietary preference...
September 22, 2016: Journal of Biological Rhythms
Yong Taek Jeong, Soo Min Oh, Jaewon Shim, Jeong Taeg Seo, Jae Young Kwon, Seok Jun Moon
Animals discriminate nutritious food from toxic substances using their sense of taste. Since taste perception requires taste receptor cells to come into contact with water-soluble chemicals, it is a form of contact chemosensation. Concurrent with that contact, mechanosensitive cells detect the texture of food and also contribute to the regulation of feeding. Little is known, however, about the extent to which chemosensitive and mechanosensitive circuits interact. Here, we show Drosophila prefers soft food at the expense of sweetness and that this preference requires labellar mechanosensory neurons (MNs) and the mechanosensory channel Nanchung...
September 19, 2016: Nature Communications
Oriane Turrel, Aurélie Lampin-Saint-Amaux, Thomas Préat, Valérie Goguel
UNLABELLED: Neprilysins are type II metalloproteinases known to degrade and inactivate a number of small peptides. Neprilysins in particular are the major amyloid-β peptide-degrading enzymes. In mouse models of Alzheimer's disease, neprilysin overexpression improves learning and memory deficits, whereas neprilysin deficiency aggravates the behavioral phenotypes. However, whether these enzymes are involved in memory in nonpathological conditions is an open question. Drosophila melanogaster is a well suited model system with which to address this issue...
September 14, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Elysse M Craddock
BACKGROUND: Species-rich adaptive radiations arising from rare plant and animal colonizers are common on remote volcanic archipelagoes. However, they present a paradox. The severe genetic bottleneck of founder events and effects of inbreeding depression, coupled with the inherently stressful volcanic environment, would seem to predict reduced evolutionary potential and increased risk of extinction, rather than rapid adaptive divergence and speciation. Significantly, eukaryotic genomes harbor many families of transposable elements (TEs) that are mobilized by genome shock; these elements may be the primary drivers of genetic reorganization and speciation on volcanic islands...
2016: Biology Direct
Afsoon Saadin, Michelle Starz-Gaiano
Drosophila border cells undergo a straightforward and stereotypical collective migration during egg development. However, a complex genetic program underlies this process. A variety of approaches, including biochemical, genetic, and imaging strategies have identified many regulatory components, revealing layers of control. This complexity suggests that the active processes of evaluating the environment, remodeling the cytoskeleton, and coordinating movements among cells, demand rapid systems for modulating cell behaviors...
October 2016: Trends in Genetics: TIG
Chun-Chieh Lin, Olena Riabinina, Christopher J Potter
A key challenge in neurobiology is to understand how neural circuits function to guide appropriate animal behaviors. Drosophila melanogaster is an excellent model system for such investigations due to its complex behaviors, powerful genetic techniques, and compact nervous system. Laboratory behavioral assays have long been used with Drosophila to simulate properties of the natural environment and study the neural mechanisms underlying the corresponding behaviors (e.g. phototaxis, chemotaxis, sensory learning and memory)(1-3)...
2016: Journal of Visualized Experiments: JoVE
Xiaonan Zhang, Quentin Gaudry
Serotonin plays a critical role in regulating many behaviors that rely on olfaction and recently there has been great effort in determining how this molecule functions in vivo. However, it remains unknown how serotonergic neurons that innervate the first olfactory relay respond to odor stimulation and how they integrate synaptically into local circuits. We examined the sole pair of serotonergic neurons that innervates the Drosophila antennal lobe (the first olfactory relay) to characterize their physiology, connectivity, and contribution to pheromone processing...
2016: ELife
Gunnar Newquist, Alexandra Novenschi, Donovan Kohler, Dennis Mathew
The ability of an animal to detect, discriminate, and respond to odors depends on the functions of its olfactory receptor neurons (ORNs). The extent to which each ORN, upon activation, contributes to chemotaxis is not well understood. We hypothesized that strong activation of each ORN elicits a different behavioral response in the Drosophila melanogaster larva by differentially affecting the composition of its navigational behavior. To test this hypothesis, we exposed Drosophila larvae to specific odorants to analyze the effect of individual ORN activity on chemotaxis...
July 2016: ENeuro
Carolina Rezával, Siddharth Pattnaik, Hania J Pavlou, Tetsuya Nojima, Birgit Brüggemeier, Luis A D D'Souza, Hany K M Dweck, Stephen F Goodwin
Courtship in Drosophila melanogaster offers a powerful experimental paradigm for the study of innate sexually dimorphic behaviors [1, 2]. Fruit fly males exhibit an elaborate courtship display toward a potential mate [1, 2]. Females never actively court males, but their response to the male's display determines whether mating will actually occur. Sex-specific behaviors are hardwired into the nervous system via the actions of the sex determination genes doublesex (dsx) and fruitless (fru) [1]. Activation of male-specific dsx/fru(+) P1 neurons in the brain initiates the male's courtship display [3, 4], suggesting that neurons unique to males trigger this sex-specific behavior...
September 26, 2016: Current Biology: CB
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"