Read by QxMD icon Read

Dendritic dynamics

George Taylor-Walker, Savannah A Lynn, Eloise Keeling, Rosie Munday, David A Johnston, Anton Page, Jennifer A Scott, Srini Goverdhan, Andrew J Lotery, J Arjuna Ratnayaka
Age-related Macular Degeneration (AMD) is a common, irreversible blinding condition that leads to the loss of central vision. AMD has a complex aetiology with both genetic as well as environmental risks factors, and share many similarities with Alzheimer's disease. Recent findings have contributed significantly to unravelling its genetic architecture that is yet to be matched by molecular insights. Studies are made more challenging by observations that aged and AMD retinas accumulate the highly pathogenic Alzheimer's-related Amyloid beta (Aβ) group of peptides, for which there appears to be no clear genetic basis...
October 14, 2016: Experimental Eye Research
Sascha Rutz, Wenjun Ouyang
Interleukin (IL)-10 is an essential anti-inflammatory cytokine that plays important roles as a negative regulator of immune responses to microbial antigens. Loss of IL-10 results in the spontaneous development of inflammatory bowel disease as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions to prevent excessive inflammation during the course of infection. IL-10 can be produced in response to pro-inflammatory signals by virtually all immune cells, including T cells, B cells, macrophages, and dendritic cells...
2016: Advances in Experimental Medicine and Biology
Idan Elbaz, David Zada, Adi Tovin, Tslil Braun, Tali Lerer-Goldshtein, Gordon Wang, Philippe Mourrain, Lior Appelbaum
Sleep is tightly regulated by the circadian clock and homeostatic mechanisms. Although the sleep/wake cycle is known to be associated with structural and physiological synaptic changes that benefit the brain, the function of sleep is still debated. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate various functions including feeding, reward, sleep, and wake. Continuous imaging of single neuronal circuits in live animals is vital to understanding the role of sleep in regulating synaptic dynamics, and the transparency of the zebrafish model enables time-lapse imaging of single synapses during both day and night...
October 12, 2016: Molecular Neurobiology
Boyu Yang, Haijiao Xu, Shaowen Wang, Mingjun Cai, Yan Shi, Guocheng Yang, Hongda Wang, Yuping Shan
Although drug delivery based on nanomaterials has shown great potential in practical applications, the trans-membrane mechanism of the drug carrier is still unclear due to technical limitations. Here, we report the dynamic transporting process of a single dendritic polyamidoamine particle via cell membranes in real time by the force tracing technique.
October 13, 2016: Nanoscale
Marjolein B M Meddens, Elvis Pandzic, Johan A Slotman, Dominique Guillet, Ben Joosten, Svenja Mennens, Laurent M Paardekooper, Adriaan B Houtsmuller, Koen van den Dries, Paul W Wiseman, Alessandra Cambi
Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters...
October 10, 2016: Nature Communications
Lifen Wang, Jianguo Wen, Huaping Sheng, Dean J Miller
Fractals are commonly observed in nature and elucidating the mechanisms of fractal-related growth is a compelling issue for both fundamental science and technology. Here we report an in situ electron microscopy study of dynamic fractal growth of platinum during electrodeposition in a miniaturized electrochemical cell at varying growth conditions. Highly dendritic growth - either dense branching or ramified islands - are formed at the solid-electrolyte interface. We show how the diffusion length of ions in the electrolyte influences morphology selection and how instability induced by initial surface roughness, combined with local enhancement of electric field, gives rise to non-uniform branched deposition as a result of nucleation/growth at preferred locations...
October 6, 2016: Nanoscale
Li Zhang, Yubin Huang, Bing Hu
Granule cells, rich in dendrites with densely punctated dendritic spines, are the most abundant inhibitory interneurons in the olfactory bulb. The dendritic spines of granule cells undergo remodeling during the development of the nervous system. The morphological plasticity of the spines' response to different olfactory experiences in vivo is not fully known. In initial studies, a single granule cell in Xenopus tadpoles was labeled with GFP plasmids via cell electroporation; then, morphologic changes of the granule cell spines were visualized by in vivo confocal time-lapse imaging...
October 7, 2016: Scientific Reports
Nirag Kadakia, Eve Armstrong, Daniel Breen, Uriel Morone, Arij Daou, Daniel Margoliash, Henry D I Abarbanel
With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC[Formula: see text] projection neurons comprised of a somatic compartment with fast Na[Formula: see text] and K[Formula: see text] currents and a dendritic compartment with slower Ca[Formula: see text] dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage [Formula: see text] alone...
September 29, 2016: Biological Cybernetics
A-Ram Lee, Kwang Woo Ko, Hojae Lee, Yi-Seul Yoon, Mi-Ryoung Song, Chul-Seung Park
UNLABELLED: During brain development, dynamic changes in neuronal membranes perform critical roles in neuronal morphogenesis and migration to create functional neural circuits. Among the proteins that induce membrane dynamics, cell adhesion molecules are important in neuronal membrane plasticity. Here, we report that V-set and transmembrane domain-containing protein 5 (Vstm5), a cell-adhesion-like molecule belonging to the Ig superfamily, was found in mouse brain. Knock-down of Vstm5 in cultured hippocampal neurons markedly reduced the complexity of dendritic structures, as well as the number of dendritic filopodia...
September 28, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Kae Won Cho, Brian F Zamarron, Lindsey A Muir, Kanakadurga Singer, Cara E Porsche, Jennifer B DelProposto, Lynn Geletka, Kevin A Meyer, Robert W O'Rourke, Carey N Lumeng
Dynamic changes of adipose tissue leukocytes, including adipose tissue macrophage (ATM) and adipose tissue dendritic cells (ATDCs), contribute to obesity-induced inflammation and metabolic disease. However, clear discrimination between ATDC and ATM in adipose tissue has limited progress in the field of immunometabolism. In this study, we use CD64 to distinguish ATM and ATDC, and investigated the temporal and functional changes in these myeloid populations during obesity. Flow cytometry and immunostaining demonstrated that the definition of ATM as F4/80(+)CD11b(+) cells overlaps with other leukocytes and that CD45(+)CD64(+) is specific for ATM...
September 28, 2016: Journal of Immunology: Official Journal of the American Association of Immunologists
Justin Balog, Suresh L Mehta, Raghu Vemuganti
Mitochondria are dynamically active organelles, regulated through fission and fusion events to continuously redistribute them across axons, dendrites, and synapses of neurons to meet bioenergetics requirements and to control various functions, including cell proliferation, calcium buffering, neurotransmission, oxidative stress, and apoptosis. However, following acute or chronic injury to CNS, altered expression and function of proteins that mediate fission and fusion lead to mitochondrial dynamic imbalance...
September 27, 2016: Journal of Cerebral Blood Flow and Metabolism
Martin Scherer, Cinja Kappel, Nicole Mohr, Karl Fischer, Philipp Heller, Romina Forst, Frank Depoix, Matthias Bros, Rudolf Zentel
Poly(2,3-dihydroxypropyl methacrylamide) (P(DHPMA))-based amphiphilic block copolymers have recently proven to form polymer vesicles (polymersomes). In this work, we further expand their potential by incorporating (i) units for pH-dependent disintegration into the hydrophobic membrane and (ii) mannose as targeting unit into the hydrophilic block. This last step relies on the use of an active ester prepolymer. We confirm the stability of the polymersomes against detergents like Triton X-100 and their low cytotoxicity...
October 10, 2016: Biomacromolecules
Xingyu Chen, Fangfang Chen, Erlendur Jónsson, Maria Forsyth
The poly(N1222)xLi1-x[AMPS] ionomer system with dual cations has previously shown decoupled Li ion dynamics from polymer segmental motions, characterized by the glass transition temperature, which can result in a conductive electrolyte material whilst retaining an appropriate modulus (ie. stiffness) so that it can suppress dendrite formation, thereby improving safety when used in lithium metal batteries. To understand this ion dynamics behavior, molecular dynamics techniques have been used in this work to simulate structure and dynamics in these materials...
September 23, 2016: Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry
Bas van Bommel, Marina Mikhaylova
Synaptic connectivity forms the basis for neuronal communication and the storage of information. Experiences and learning of new abilities can drive remodelling of this connectivity and promotes the formation of spine clusters; dendritic segments with a higher spine density. Spines located within these segments are frequently co-activated, undergo different dynamics than synapses located outside of this dendritic compartment and have, in general, a longer lifetime. Several lines of evidence have shown that chemical synapses located close to each other share or compete for intracellular signalling molecules and structural resources...
September 19, 2016: Neuroscience and Biobehavioral Reviews
Sukriti Sukriti, Nirupma Trehanpati, Manoj Kumar, Chandana Pande, Syed S Hissar, Shiv Kumar Sarin
BACKGROUND: Dendritic cells (DCs) promote pathogen recognition, uptake and presentation of antigen through DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) and toll-like receptors (TLRs). AIMS AND OBJECTIVES: We aimed to study temporal changes in DCs, TLRs and DC-SIGN during acute viral hepatitis B (AVHB) infection and compare them to chronic (CHB) and to investigate the earliest time point of activated pathogen recognition receptors in hepatitis B viral infection...
September 22, 2016: Hepatology International
Laura Smit-Rigter, Rajeev Rajendran, Catia A P Silva, Liselot Spierenburg, Femke Groeneweg, Emma M Ruimschotel, Danielle van Versendaal, Chris van der Togt, Ulf T Eysel, J Alexander Heimel, Christian Lohmann, Christiaan N Levelt
Mitochondria buffer intracellular Ca(2+) and provide energy [1]. Because synaptic structures with high Ca(2+) buffering [2-4] or energy demand [5] are often localized far away from the soma, mitochondria are actively transported to these sites [6-11]. Also, the removal and degradation of mitochondria are tightly regulated [9, 12, 13], because dysfunctional mitochondria are a source of reactive oxygen species, which can damage the cell [14]. Deficits in mitochondrial trafficking have been proposed to contribute to the pathogenesis of Parkinson's disease, schizophrenia, amyotrophic lateral sclerosis, optic atrophy, and Alzheimer's disease [13, 15-19]...
October 10, 2016: Current Biology: CB
Dragos C Dasoveanu, William D Shipman, Jennifer J Chia, Susan Chyou, Theresa T Lu
During normal and pathologic immune responses, lymph nodes can swell considerably. The lymph node vascular-stromal compartment supports and regulates the developing immune responses and undergoes dynamic expansion and remodeling. Recent studies have shown that dendritic cells (DCs), best known for their antigen presentation roles, can directly regulate the vascular-stromal compartment, pointing to a new perspective on DCs as facilitators of lymphoid tissue function. Here, we review the phases of lymph node vascular-stromal growth and remodeling during immune responses, discuss the roles of DCs, and discuss how this understanding can potentially be used for developing novel therapeutic approaches...
September 13, 2016: Trends in Immunology
Hege Lund, Preben Boysen, Caroline Piercey Åkesson, Anna Monika Lewandowska-Sabat, Anne K Storset
The dynamics of skin-draining cells following infection or vaccination provide important insight into the initiation of immune responses. In this study, the local recruitment and activation of immune cells in draining lymph nodes (LNs) was studied in calves in an adjuvant-induced inflammation. A transient but remarkably strong recruitment of monocytes was demonstrated after onset of inflammation, constituting up to 41% of live cells in the draining LNs after 24 h. Numerous CD14(+) cells were visualized in subcutaneous tissues and draining LNs, and the majority of these cells did not express dendritic cell-associated markers CD205 and CD11c...
2016: Frontiers in Immunology
Hua Geng, Xiao-Di Tan
Precise and dynamic regulation of gene expression is a key feature of immunity. In recent years, rapid advances in transcriptome profiling analysis have led to recognize long non-coding RNAs (lncRNAs) as an additional layer of gene regulation context. In the immune system, lncRNAs are found to be widely expressed in immune cells including monocytes, macrophages, dendritic cells (DCs), neutrophils, T cells and B cells during their development, differentiation and activation. However, the functional importance of immune-related lncRNAs is just emerging to be characterized...
March 2016: Genes & Diseases
Francisco J Alvarez
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity...
September 6, 2016: Brain Research Bulletin
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"