Read by QxMD icon Read

DNA ligase

Xing Liu, Xiaolian Cai, Bo Hu, Zhichao Mei, Dawei Zhang, Gang Ouyang, Jing Wang, Wei Zhang, Wuhan Xiao
FOXO3a, a member of the forkhead homeobox type O (FOXO) family of transcriptional factors, regulates cell survival in response to DNA damage, caloric restriction, and oxidative stress. The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of the E3 ubiquitin ligase complex that mediates hypoxia-inducible factor-α (HIF-α) degradation under aerobic conditions, thus acting as one of the key regulators of hypoxia signaling. However, whether FOXO3a impacts cellular hypoxia stress remains unknown...
October 24, 2016: Journal of Biological Chemistry
Qi Zhang, Zhongduo Wang, Feng Hou, Rachel Harding, Xinyi Huang, Aiping Dong, John R Walker, Yufeng Tong
BACKGROUND: Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function...
October 21, 2016: Biochimica et Biophysica Acta
Guanhua Song, Bingyu Liu, Zhihui Li, Haifeng Wu, Peng Wang, Kai Zhao, Guosheng Jiang, Lei Zhang, Chengjiang Gao
TBK1 is essential for interferon-β (IFN-β) production and innate antiviral immunity. Here we identified the T cell anergy-related E3 ubiquitin ligase RNF128 as a positive regulator of TBK1 activation. RNF128 directly interacted with TBK1 through its protease-associated (PA) domain and catalyzed the K63-linked polyubiquitination of TBK1, which led to TBK1 activation, IRF3 activation and IFN-β production. Deficiency of RNF128 expression attenuated IRF3 activation, IFN-β production and innate antiviral immune responses to RNA and DNA viruses, in vitro and in vivo...
October 24, 2016: Nature Immunology
Alejandro Parrales, Atul Ranjan, Swathi V Iyer, Subhash Padhye, Scott J Weir, Anuradha Roy, Tomoo Iwakuma
Stabilization of mutant p53 (mutp53) in tumours greatly contributes to malignant progression. However, little is known about the underlying mechanisms and therapeutic approaches to destabilize mutp53. Here, through high-throughput screening we identify statins, cholesterol-lowering drugs, as degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. Statins preferentially suppress mutp53-expressing cancer cell growth. Specific reduction of mevalonate-5-phosphate by statins or mevalonate kinase knockdown induces CHIP ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutp53 by impairing interaction of mutp53 with DNAJA1, a Hsp40 family member...
October 24, 2016: Nature Cell Biology
Maarten A A van de Klundert, Maartje van den Biggelaar, Neeltje A Kootstra, Hans L Zaaijer
In the infected human hepatocyte, expression of the hepatitis B virus (HBV) accessory protein X (HBx) is essential to maintain viral replication in vivo. HBx critically interacts with the host damaged DNA binding protein 1 (DDB1) and the associated ubiquitin ligase machinery, suggesting that HBx functions by inducing the degradation of host proteins. To identify such host proteins, we systematically analyzed the HBx interactome. One HBx interacting protein, talin-1 (TLN1), was proteasomally degraded upon HBx expression...
October 19, 2016: Viruses
Dmitry M Korzhnev, Dante Neculai, Sirano Dhe-Paganon, Cheryl H Arrowsmith, Irina Bezsonova
HLTF is a SWI2/SNF2-family ATP-dependent chromatin remodeling enzyme that acts in the error-free branch of DNA damage tolerance (DDT), a cellular mechanism that enables replication of damaged DNA while leaving damage repair for a later time. Human HLTF and a closely related protein SHPRH, as well as their yeast homologue Rad5, are multi-functional enzymes that share E3 ubiquitin-ligase activity required for activation of the error-free DDT. HLTF and Rad5 also function as ATP-dependent dsDNA translocases and possess replication fork reversal activities...
October 22, 2016: Journal of Biomolecular NMR
Guangwen Li, Zhijun Li, Xiuhua You, Jinghua Chen, Shurong Tang
A novel label-free electrochemical biosensor for the detection of Hg(2+) based on ligase mediated creation of G-quadruplex-hemin DNAzyme has been developed. Firstly, Cp probe was immobilized on the gold electrode surface through Au-SH bond. In the presence of Hg(2+), Cp and Ap probes were partly hybridized with the LJ probe respectively through the specific T-Hg(2+)-T interaction. Then, the adjacent 3'-OH terminal of Cp will link with the 5'-PO4 terminal of Ap to form a G-rich DNA at the function of T4-ligase...
December 1, 2016: Talanta
Fanny Morice-Picard, Giovanni Benard, Hamid R Rezvani, Eulalie Lasseaux, Delphine Simon, Sébastien Moutton, Caroline Rooryck, Didier Lacombe, Clarisse Baumann, Benoit Arveiler
The ubiquitin-proteasome pathway is involved in the pathogenesis of several neurogenetic diseases. We describe a Mauritanian patient harboring a homozygous deletion restricted to two contiguous genes HERC2 and OCA2 and presenting with severe developmental abnormalities. The deletion causes the complete loss of HERC2 protein function, an E3-ubiquitin ligase. HERC2 is known to target XPA and BRCA1 for degradation and a mechanism whereby it is involved in DNA repair and cell cycle regulation. We showed that loss of HERC2 function leads to the accumulation of XPA and BRCA1 in the patient's fibroblasts and generates decreased sensitivity to apoptosis and increased level of DNA repair...
October 19, 2016: European Journal of Human Genetics: EJHG
Vibhuti Joshi, Ayeman Amanullah, Arun Upadhyay, Ribhav Mishra, Amit Kumar, Amit Mishra
Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity and aging...
2016: Frontiers in Molecular Neuroscience
Woong Choi, Gyoo Yeol Jung
For the development of clinically useful genotyping methods for single nucleotide polymorphisms (SNPs), accuracy, simplicity, sensitivity, and cost-effectiveness are the most important criteria. Among the methods currently being developed for SNP genotyping technology, the ligation-dependent method is considered the simplest for clinical diagnosis. However, sensitivity is not guaranteed by the ligation reaction alone, and analysis of multiple targets is limited by the detection method. Although CE is an attractive alternative to error-prone hybridization-based detection, the multiplex assay process is complicated because of the size-based DNA separation principle...
October 18, 2016: Electrophoresis
Jianhua Yang, Anna Joëlle Ruff, Stefanie Nicole Hamer, Feng Cheng, Ulrich Schwaneberg
Escherichia coli is a common host for recombinant protein production in which production titers are highly dependent on the employed expression system. Promoters are thereby a key element to control gene expression levels. In this study, a novel PLICable promoter toolbox was developed which enables in a single cloning step and after a screening experiment to identify out of ten IPTG-inducible promoters (T7, A3, lpp, tac, pac, Sp6, lac, npr, trc and syn) the most suitable one for high level protein production...
October 18, 2016: Biotechnology Journal
Fei Lu, Xiaojun Wu, Feng Yin, Christina Chia-Fang Lee, Min Yu, Ivailo S Mihaylov, Jiekai Yu, Hong Sun, Hui Zhang
DNA replication licensing occurs on chromatin, but how the chromatin template is regulated for replication remains mostly unclear. Here, we have analyzed the requirement of histone methyltransferases for a specific type of replication: the DNA re-replication induced by the downregulation of either Geminin, an inhibitor of replication licensing protein CDT1, or the CRL4CDT2 ubiquitin E3 ligase. We found that siRNA-mediated reduction of essential components of the MLL-WDR5-RBBP5 methyltransferase complexes including WDR5 or RBBP5, which transfer methyl groups to histone H3 at K4 (H3K4), suppressed DNA re-replication and chromosomal polyploidy...
October 15, 2016: Biology Open
Ilenia Pellarin, Laura Arnoldo, Silvia Costantini, Silvia Pegoraro, Gloria Ros, Carlotta Penzo, Gianluca Triolo, Francesca Demarchi, Riccardo Sgarra, Alessandro Vindigni, Guidalberto Manfioletti
The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways...
2016: PloS One
K Matsuura, N-J Huang, K Cocce, L Zhang, S Kornbluth
Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/C(Cdh1) ubiquitin ligase...
October 10, 2016: Oncogene
Thomas Altmann, Andrew R Gennery
DNA ligase IV deficiency is a rare primary immunodeficiency, LIG4 syndrome, often associated with other systemic features. DNA ligase IV is part of the non-homologous end joining mechanism, required to repair DNA double stranded breaks. Ubiquitously expressed, it is required to prevent mutagenesis and apoptosis, which can result from DNA double strand breakage caused by intracellular events such as DNA replication and meiosis or extracellular events including damage by reactive oxygen species and ionising radiation...
October 7, 2016: Orphanet Journal of Rare Diseases
Amrita Singh, Navneet Singh, Digambar Behera, Siddharth Sharma
XRCC1 is a scaffold protein that provides for interaction of DNA polymerase, DNA ligase and damaged DNA. Genotyping was done for the five non-synonymous and synonymous variants of XRCC1 i.e. XRCC1, Arg(194)Trp, Pro(206)Pro, Arg(280)His, Arg(399)Gln, Gln(632)Gln. Logistic regression analysis was used to analyze the association of XRCC1 with lung cancer, followed by data mining analysis which included both Multi-dimensionality reduction (MDR) and Classification and Regression tree (CART) analysis so as to find possible interaction between SNPs on XRCC1 gene...
September 28, 2016: DNA Repair
Małgorzata Czyż, Monika Toma, Anna Gajos-Michniewicz, Kinga Majchrzak, Grazyna Hoser, Janusz Szemraj, Margaret Nieborowska-Skorska, Phil Cheng, Daniel Gritsyuk, Mitchell Levesque, Reinhard Dummer, Tomasz Sliwinski, Tomasz Skorski
Cancer including melanoma may be ''addicted" to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes...
September 27, 2016: Oncotarget
Karl-Uwe Reusswig, Fabian Zimmermann, Lorenzo Galanti, Boris Pfander
Temporal separation of DNA replication initiation into licensing and firing phases ensures the precise duplication of the genome during each cell cycle. Cyclin-dependent kinase (CDK) is known to generate this separation by activating firing factors and at the same time inhibiting licensing factors but may not be sufficient to ensure robust separation at transitions between both phases. Here, we show that a temporal gap separates the inactivation of firing factors from the re-activation of licensing factors during mitosis in budding yeast...
October 4, 2016: Cell Reports
Howard H Y Chang, Go Watanabe, Christina A Gerodimos, Takashi Ochi, Tom L Blundell, Stephen P Jackson, Michael R Lieber
The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing double-stranded DNA (dsDNA) breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (Paralog of XRCC4 and XLF)...
October 4, 2016: Journal of Biological Chemistry
Gangyi Chen, Juan Dong, Yi Yuan, Na Li, Xin Huang, Xin Cui, Zhuo Tang
Nucleic acid amplification is the core technology of molecular biology and genetic engineering. Various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). However, most of these methods can only detect single stranded nucleic acid. Herein, we put forward a simple solution for opening double-stranded DNA for isothermal detection methods. The strategy employs recombination protein from E. coli (RecA) to form nucleoprotein complex with single-stranded DNA, which could scan double-stranded template for homologous sites...
September 30, 2016: Scientific Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"