keyword
MENU ▼
Read by QxMD icon Read
search

DMD therapy

keyword
https://www.readbyqxmd.com/read/28428530/-duchenne-muscle-dystrophy-caused-bronchial-obstruction
#1
Aki Fujiwara, Nozomu Iwashiro, Masanori Ohara
Duchenne muscle dystrophy (DMD), X-linked recessive genetic disorder, causes a variety of complications including scoliosis. We report a case of bronchial obstruction and hemorrhage caused by scoliosis with DMD. A man in his forties having been hospitalized due to DMD since the age of 6, produced bloody sputum. A chest X-ray showed atelectasis in his right lower lung. A computed tomography and bronchoscopy indicated that scoliosis and thoracic deformity due to muscle dystrophy caused compression of a right main bronchus by the vertebra, leading to bronchial obstruction and bleeding...
April 2017: Kyobu Geka. the Japanese Journal of Thoracic Surgery
https://www.readbyqxmd.com/read/28416280/progress-toward-gene-therapy-for-duchenne-muscular-dystrophy
#2
REVIEW
Joel R Chamberlain, Jeffrey S Chamberlain
Duchenne muscular dystrophy (DMD) has been a major target for gene therapy development for nearly 30 years. DMD is among the most common genetic diseases, and isolation of the defective gene (DMD, or dystrophin) was a landmark discovery, as it was the first time a human disease gene had been cloned without knowledge of the protein product. Despite tremendous obstacles, including the enormous size of the gene and the large volume of muscle tissue in the human body, efforts to devise a treatment based on gene replacement have advanced steadily through the combined efforts of dozens of labs and patient advocacy groups...
April 14, 2017: Molecular Therapy: the Journal of the American Society of Gene Therapy
https://www.readbyqxmd.com/read/28398005/nanotherapy-for-duchenne-muscular-dystrophy
#3
REVIEW
Michael E Nance, Chady H Hakim, N Nora Yang, Dongsheng Duan
Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials...
April 11, 2017: Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology
https://www.readbyqxmd.com/read/28397169/sleep-disordered-breathing-in-duchenne-muscular-dystrophy
#4
REVIEW
Antonella LoMauro, Maria Grazia D'Angelo, Andrea Aliverti
This review aims to explain the inevitable imbalance between respiratory load, drive, and muscular force that occurs in the natural aging of Duchenne muscular dystrophy and that predisposes these patients to sleep disordered breathing (SDB). In DMD, SDB is characterized by oxygen desaturation, apneas, hypercapnia, and hypoventilation during sleep and ultimately develops into respiratory failure during wakefulness. It can be present in all age groups. Young patients risk obstructive apneas because of weight gain, secondary to progressive physical inactivity and prolonged corticosteroid therapy; older patients hypoventilate and desaturate because of respiratory muscle weakness, in particular the diaphragm...
May 2017: Current Neurology and Neuroscience Reports
https://www.readbyqxmd.com/read/28390761/the-aav-mediated-and-rna-guided-crispr-cas9-system-for-gene-therapy-of-dmd-and-bmd
#5
REVIEW
Jing-Zhang Wang, Peng Wu, Zhi-Min Shi, Yan-Li Xu, Zhi-Jun Liu
Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)...
April 5, 2017: Brain & Development
https://www.readbyqxmd.com/read/28364245/systemic-delivery-of-morpholinos-to-skip-multiple-exons-in-a-dog-model-of-duchenne-muscular-dystrophy
#6
Rika Maruyama, Yusuke Echigoya, Oana Caluseriu, Yoshitsugu Aoki, Shin'ichi Takeda, Toshifumi Yokota
Exon-skipping therapy is an emerging approach that uses synthetic DNA-like molecules called antisense oligonucleotides (AONs) to splice out frame-disrupting parts of mRNA, restore the reading frame, and produce truncated yet functional proteins. Multiple exon skipping utilizing a cocktail of AONs can theoretically treat 80-90% of patients with Duchenne muscular dystrophy (DMD). The success of multiple exon skipping by the systemic delivery of a cocktail of AONs called phosphorodiamidate morpholino oligomers (PMOs) in a DMD dog model has made a significant impact on the development of therapeutics for DMD, leading to clinical trials of PMO-based drugs...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28357131/aquatic-therapy-for-boys-with-duchenne-muscular-dystrophy-dmd-an-external-pilot-randomised-controlled-trial
#7
Daniel Hind, James Parkin, Victoria Whitworth, Saleema Rex, Tracey Young, Lisa Hampson, Jennie Sheehan, Chin Maguire, Hannah Cantrill, Elaine Scott, Heather Epps, Marion Main, Michelle Geary, Heather McMurchie, Lindsey Pallant, Daniel Woods, Jennifer Freeman, Ellen Lee, Michelle Eagle, Tracey Willis, Francesco Muntoni, Peter Baxter
BACKGROUND: Standard treatment of Duchenne muscular dystrophy (DMD) includes regular physiotherapy. There are no data to show whether adding aquatic therapy (AT) to land-based exercises helps maintain motor function. We assessed the feasibility of recruiting and collecting data from boys with DMD in a parallel-group pilot randomised trial (primary objective), also assessing how intervention and trial procedures work. METHODS: Ambulant boys with DMD aged 7-16 years established on steroids, with North Star Ambulatory Assessment (NSAA) score ≥8, who were able to complete a 10-m walk test without aids or assistance, were randomly allocated (1:1) to 6 months of either optimised land-based exercises 4 to 6 days/week, defined by local community physiotherapists, or the same 4 days/week plus AT 2 days/week...
2017: Pilot and Feasibility Studies
https://www.readbyqxmd.com/read/28344992/mechanism-of-deletion-removing-all-dystrophin-exons-in-a-canine-model-for-dmd-implicates-concerted-evolution-of-x-chromosome-pseudogenes
#8
D Jake VanBelzen, Alock S Malik, Paula S Henthorn, Joe N Kornegay, Hansell H Stedman
Duchenne muscular dystrophy (DMD) is a lethal, X-linked, muscle-wasting disorder caused by mutations in the large, 2.4-Mb dystrophin gene. The majority of DMD-causing mutations are sporadic, multi-exon, frameshifting deletions, with the potential for variable immunological tolerance to the dystrophin protein from patient to patient. While systemic gene therapy holds promise in the treatment of DMD, immune responses to vectors and transgenes must first be rigorously evaluated in informative preclinical models to ensure patient safety...
March 17, 2017: Molecular Therapy. Methods & Clinical Development
https://www.readbyqxmd.com/read/28338606/dystrophic-cardiomyopathy-potential-role-of-calcium-in-pathogenesis-treatment-and-novel-therapies
#9
REVIEW
Victoria P A Johnstone, Helena M Viola, Livia C Hool
Duchenne muscular dystrophy (DMD) is caused by defects in the DMD gene and results in progressive wasting of skeletal and cardiac muscle due to an absence of functional dystrophin. Cardiomyopathy is prominent in DMD patients, and contributes significantly to mortality. This is particularly true following respiratory interventions that reduce death rate and increase ambulation and consequently cardiac load. Cardiomyopathy shows an increasing prevalence with age and disease progression, and over 95% of patients exhibit dilated cardiomyopathy by the time they reach adulthood...
March 24, 2017: Genes
https://www.readbyqxmd.com/read/28334037/ang1-treatment-reduces-muscle-pathology-and-prevents-a-decline-in-perfusion-in-dmd-mice
#10
Kelly M Gutpell, Nikola Tasevski, Boaz Wong, William Thomas Hrinivich, Feng Su, Jennifer Hadway, Lise Desjardins, Ting-Yim Lee, Lisa Marie Hoffman
Vascular endothelial growth factor (VEGF) and other pro-angiogenic growth factors have been investigated to enhance muscle tissue perfusion and repair in Duchenne muscular dystrophy (DMD). Current understanding is limited by a lack of functional data following in vivo delivery of these growth factors. We previously used dynamic contrast-enhanced computed tomography to monitor disease progression in murine models of DMD, but no study to date has utilized this imaging technique to assess vascular therapy in a preclinical model of DMD...
2017: PloS One
https://www.readbyqxmd.com/read/28325301/increased-expression-of-laminin-subunit-alpha-1-chain-by-dcas9-vp160
#11
Arnaud Perrin, Joël Rousseau, Jacques P Tremblay
Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis...
March 17, 2017: Molecular Therapy. Nucleic Acids
https://www.readbyqxmd.com/read/28325281/systemic-antisense-therapeutics-for-dystrophin-and-myostatin-exon-splice-modulation-improve-muscle-pathology-of-adult-mdx-mice
#12
Ngoc Lu-Nguyen, Alberto Malerba, Linda Popplewell, Fred Schnell, Gunnar Hanson, George Dickson
Antisense-mediated exon skipping is a promising approach for the treatment of Duchenne muscular dystrophy (DMD), a rare life-threatening genetic disease due to dystrophin deficiency. Such an approach can restore the disrupted reading frame of dystrophin pre-mRNA, generating a truncated form of the protein. Alternatively, antisense therapy can be used to induce destructive exon skipping of myostatin pre-mRNA, knocking down myostatin expression to enhance muscle strength and reduce fibrosis. We have reported previously that intramuscular or intraperitoneal antisense administration inducing dual exon skipping of dystrophin and myostatin pre-mRNAs was beneficial in mdx mice, a mouse model of DMD, although therapeutic effects were muscle type restricted, possibly due to the delivery routes used...
March 17, 2017: Molecular Therapy. Nucleic Acids
https://www.readbyqxmd.com/read/28318817/clinical-and-mutational-characteristics-of-duchenne-muscular-dystrophy-patients-based-on-a-comprehensive-database-in-south-china
#13
Dan-Ni Wang, Zhi-Qiang Wang, Lei Yan, Jin He, Min-Ting Lin, Wan-Jin Chen, Ning Wang
The development of clinical trials for Duchenne muscular dystrophy (DMD) in China faces many challenges due to limited information about epidemiological data, natural history and clinical management. To provide these detailed data, we developed a comprehensive database based on registered DMD patients from South China and analysed their clinical and mutational characteristics. The database included DMD registrants confirmed by clinical presentation, family history, genetic detection, prognostic outcome, and/or muscle biopsy...
February 21, 2017: Neuromuscular Disorders: NMD
https://www.readbyqxmd.com/read/28303972/lentiviral-vectors-can-be-used-for-full-length-dystrophin-gene-therapy
#14
John R Counsell, Zeinab Asgarian, Jinhong Meng, Veronica Ferrer, Conrad A Vink, Steven J Howe, Simon N Waddington, Adrian J Thrasher, Francesco Muntoni, Jennifer E Morgan, Olivier Danos
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery...
March 17, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28289221/gentamicin-b1-is-a-minor-gentamicin-component-with-major-nonsense-mutation-suppression-activity
#15
Alireza Baradaran-Heravi, Jürgen Niesser, Aruna D Balgi, Kunho Choi, Carla Zimmerman, Andrew P South, Hilary J Anderson, Natalie C Strynadka, Marcel B Bally, Michel Roberge
Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy...
March 28, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28283113/discontinuation-of-disease-modifying-treatments-in-middle-aged-multiple-sclerosis-patients-first-line-drugs-vs-natalizumab
#16
Jan Fagius, Amalia Feresiadou, Elna-Marie Larsson, Joachim Burman
BACKGROUND: Several disease-modifying drugs (DMD) are available for the treatment of MS, and most patients with relapsing-remitting disease are currently treated. Data on when and how DMD treatment can be safely discontinued are scarce. METHODS: Fifteen MS patients, treated with natalizumab for >5 years without clinical and radiological signs of inflammatory disease activity, suspended treatment and were monitored with MRI examinations and clinical follow-up to determine recurrence of disease activity...
February 2017: Multiple Sclerosis and related Disorders
https://www.readbyqxmd.com/read/28252048/identification-of-serum-protein-biomarkers-for-utrophin-based-dmd-therapy
#17
Simon Guiraud, Benjamin Edwards, Sarah E Squire, Arran Babbs, Nandini Shah, Adam Berg, Huijia Chen, Kay E Davies
Despite promising therapeutic avenues, there is currently no effective treatment for Duchenne muscular dystrophy (DMD), a lethal monogenic disorder caused by the loss of the large cytoskeletal protein, dystrophin. A highly promising approach to therapy, applicable to all DMD patients irrespective to their genetic defect, is to modulate utrophin, a functional paralogue of dystrophin, able to compensate for the primary defects of DMD restoring sarcolemmal stability. One of the major difficulties in assessing the effectiveness of therapeutic strategies is to define appropriate outcome measures...
March 2, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28250438/lentiviral-vectors-can-be-used-for-full-length-dystrophin-gene-therapy
#18
John R Counsell, Zeinab Asgarian, Jinhong Meng, Veronica Ferrer, Conrad A Vink, Steven J Howe, Simon N Waddington, Adrian J Thrasher, Francesco Muntoni, Jennifer E Morgan, Olivier Danos
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery...
December 2017: Scientific Reports
https://www.readbyqxmd.com/read/28247611/-research-progress-on-disease-models-and-gene-therapy-of-duchenne-muscular-dystrophy
#19
Tongyu Li, Ping Liang
Duchenne muscular dystrophy (DMD) is an X-linked, recessive and lethal genetic disease, which usually caused by gene mutations and the underlying mechanisms are complicated and diverse. The causal gene of DMD is the largest one in human that locates in the region of Xp21.2, encoding dystrophin. Currently there is no effective treatment for DMD patients. The treatment of DMD depends on gene mutation and molecular mechanism study of the disease, which requires reliable disease models such as mdx mouse model. Recently, researchers have increasingly discovered gene therapy strategies for DMD, and the efficacy has been demonstrated in DMD animal models...
May 25, 2016: Zhejiang da Xue Xue Bao. Yi Xue Ban, Journal of Zhejiang University. Medical Sciences
https://www.readbyqxmd.com/read/28219442/eplerenone-for-early-cardiomyopathy-in-duchenne-muscular-dystrophy-results-of-a-two-year-open-label-extension-trial
#20
Subha V Raman, Kan N Hor, Wojciech Mazur, Xin He, John T Kissel, Suzanne Smart, Beth McCarthy, Sharon L Roble, Linda H Cripe
BACKGROUND: Cardiomyopathy is a leading cause of morbidity and mortality in boys with Duchenne muscular dystrophy (DMD). We recently showed in a 12-month double-blind randomized controlled trial that adding eplerenone to background medical therapy was cardioprotective in this population. The objective of this study was to evaluate the safety and efficacy of longer-term eplerenone therapy in boys with DMD. RESULTS: Eleven subjects (phase 1 baseline median [range] age: 13 [7 - 25] years) from the original 12-month trial at a single participating center were enrolled...
February 20, 2017: Orphanet Journal of Rare Diseases
keyword
keyword
27460
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"