Read by QxMD icon Read

R2r3 myb

Kathleen G Ferris
Identifying the individual loci and mutations that underlie adaptation to extreme environments has long been a goal of evolutionary biology. However, finding the genes that underlie adaptive traits is difficult for several reasons. First, because many traits and genes evolve simultaneously as populations diverge, it is difficult to disentangle adaptation from neutral demographic processes. Second, finding the individual loci involved in any trait is challenging given the respective limitations of quantitative and population genetic methods...
November 2016: Molecular Ecology
Yi-Shih Chen, Yi-Chi Chao, Tzu-Wei Tseng, Chun-Kai Huang, Pei-Ching Lo, Chung-An Lu
Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice...
November 19, 2016: Plant Molecular Biology
Lichao Zhang, Chunhao Dong, Qiang Zhang, Guangyao Zhao, Fu Li, Chuan Xia, Lina Zhang, Longzhi Han, Jinxia Wu, Jizeng Jia, Xu Liu, Xiuying Kong
Leaf rolling is an important agronomic trait in crop breeding. Moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency. Although some genes controlling leaf rolling have been isolated from rice and other plant species, few studies have examined leaf rolling in wheat. In the present study, the leaf rolling regulator gene, TaMYB18, was identified in a large-scale transgene project involving the transformation of 1455 wheat transcription factor genes into rice...
December 2, 2016: Biochemical and Biophysical Research Communications
Hui Zhou, Qian Peng, Jianbo Zhao, Albert Owiti, Fei Ren, Liao Liao, Lu Wang, Xianbao Deng, Quan Jiang, Yuepeng Han
Anthocyanin accumulation is responsible for flower coloration in peach. Here, we report the identification and functional characterization of eight flavonoid-related R2R3-MYB transcription factors, designated PpMYB10.2, PpMYB9, PpMYBPA1, Peace, PpMYB17, PpMYB18, PpMYB19, and PpMYB20, respectively, in peach flower transcriptome. PpMYB10.2 and PpMYB9 are able to activate transcription of anthocyanin biosynthetic genes, whilst PpMYBPA1 and Peace have a strong activation on the promoters of proanthocyanin (PA) biosynthetic genes...
2016: Frontiers in Plant Science
Fei Gao, Huipeng Yao, Haixia Zhao, Jing Zhou, Xiaopeng Luo, Yunji Huang, Chenglei Li, Hui Chen, Qi Wu
Tartary buckwheat is a strongly abiotic, resistant coarse cereal, but its tolerance mechanisms for stress are largely unknown. MYB transcription factors play key roles in various physiological, biochemical and molecular responses, which can both positively and negatively regulate the stress tolerance of plants. In this study, we report that the expression of FtMYB10, a R2R3-MYB gene from Tartary buckwheat, was induced significantly by ABA and drought treatments. A seed germination test under ABA treatment indicated that transgenic lines were less sensitive to ABA...
October 26, 2016: Plant Physiology and Biochemistry: PPB
Shengnan Li, Wenyi Wang, Jinlan Gao, Kangquan Yin, Rui Wang, ChengCheng Wang, Morten Petersen, John Mundy, Jin-Long Qiu
Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photo-protective anthocyanin pigments is light dependent and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here we report that MYB75 interacts with and is phosphorylated by MAP KINASE 4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75...
November 3, 2016: Plant Cell
Marçal Soler, Anna Plasencia, Jorge Lepikson-Neto, Eduardo L O Camargo, Annabelle Dupas, Nathalie Ladouce, Edouard Pesquet, Fabien Mounet, Romain Larbat, Jacqueline Grima-Pettenati
Comparative phylogenetic analyses of the R2R3-MYB transcription factor family revealed that five subgroups were preferentially found in woody species and were totally absent from Brassicaceae and monocots (Soler et al., 2015). Here, we analyzed one of these subgroups (WPS-I) for which no gene had been yet characterized. Most Eucalyptus members of WPS-I are preferentially expressed in the vascular cambium, the secondary meristem responsible for tree radial growth. We focused on EgMYB88, which is the most specifically and highly expressed in vascular tissues, and showed that it behaves as a transcriptional activator in yeast...
2016: Frontiers in Plant Science
M He, H Wang, Y Z Liu, W J Gao, Y H Gao, F Wang, Y W Zhou
v-myb avianmyeloblastosis viral oncogene homolog (MYB) transcription factors are key regulators of stress responsive gene expression in plants. In this study, the MYB gene, ChiMYB (GenBank accession No. KT948997), was isolated from Chrysanthemum indicum, and was functionally characterized with an emphasis on salinity stress tolerance. The full ChiMYB cDNA sequence (948 bp) encoded a typical R2R3 MYB transcription factor that contained 315 amino acid residues and two MYB domains. The temporal expression pattern of ChiMYB was noted in C...
September 23, 2016: Genetics and Molecular Research: GMR
X B Luo, Z Liu, L Xu, Y Wang, X W Zhu, W Zhang, W Chen, Y L Zhu, X J Su, M Everlyne, L W Liu
Glucosinolates (GSLs) are important secondary metabolites in Brassicaceae plants. Previous studies have mainly focused on GSL contents, types, and biosynthesis-related genes, but the molecular characterization patterns of GSL biosynthesis-related transcription factors remain largely unexplored in radish (Raphanus sativus L.). To isolate transcription factor genes regulating the GSL biosynthesis, genomic DNA and cDNA sequences of RsMYB28 and RsMYB29 genes were isolated in radish. Two R2R3-MYB domains were identified in the deduced amino acid sequences...
September 23, 2016: Genetics and Molecular Research: GMR
Jing Zhang, Hang Ge, Chen Zang, Xian Li, Donald Grierson, Kun-Song Chen, Xue-Ren Yin
Lignin is important for plant secondary cell wall formation and participates in resistance to various biotic and abiotic stresses. Loquat undergoes lignification not only in vegetative tissues but also in flesh of postharvest fruit, which adversely affects consumer acceptance. Thus, researches on lignin biosynthesis and regulation are important to understand loquat fruit lignification. In loquat, a gene encoding an enzyme in the lignin biosynthesis pathway, Ej4CL1, was reported to be regulated by transcription factors, including EjMYB1, EjMYB2, EjMYB8, and EjAP2-1, knowledge of this process is still limited...
2016: Frontiers in Plant Science
Shan-Shan Sun, Paul F Gugger, Qing-Feng Wang, Jin-Ming Chen
The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers...
2016: PeerJ
José Tomás Matus
Plants are constantly challenged by environmental fluctuations. In response, they have developed a wide range of morphological and biochemical adaptations committed to ameliorate the effects of abiotic stress. When exposed to higher solar radiation levels, plants activate the synthesis of a large set of enzymes and secondary metabolites as part of a complex sunscreen and antioxidant defense mechanism. Grapevine (Vitis vinifera L.) has become a widely used system for studying adaptive responses to this type of stress since changes in berry composition, positively influenced by increased ultraviolet (UV) radiation levels, improve the quality of wines subsequently produced...
2016: Frontiers in Plant Science
Lulu Xie, Fei Li, Shifan Zhang, Hui Zhang, Wei Qian, Peirong Li, Shujiang Zhang, Rifei Sun
Introgression breeding is a widely used method for the genetic improvement of crop plants; however, the mechanism underlying candidate gene flow patterns during hybridization is poorly understood. In this study, we used a powerful pipeline to investigate a Chinese cabbage (Brassica rapa L. ssp. pekinensis) introgression line with the anthocyanin overaccumulation phenotype. Our purpose was to analyze the gene flow patterns during hybridization and elucidate the genetic factors responsible for the accumulation of this important pigment compound...
2016: Frontiers in Plant Science
Binmei Sun, Zhangsheng Zhu, Panrong Cao, Hao Chen, Changming Chen, Xin Zhou, Yanhui Mao, Jianjun Lei, Yanpin Jiang, Wei Meng, Yingxi Wang, Shaoqun Liu
Purple foliage always appears in Camellia sinensis families; however, the transcriptional regulation of anthocyanin biosynthesis is unknown. The tea bud sport cultivar 'Zijuan' confers an abnormal pattern of anthocyanin accumulation, resulting in a mutant phenotype that has a striking purple color in young foliage and in the stem. In this study, we aimed to unravel the underlying molecular mechanism of anthocyanin biosynthetic regulation in C. sinensis. Our results revealed that activation of the R2R3-MYB transcription factor (TF) anthocyanin1 (CsAN1) specifically upregulated the bHLH TF CsGL3 and anthocyanin late biosynthetic genes (LBGs) to confer ectopic accumulation of pigment in purple tea...
2016: Scientific Reports
Zhenqian Zhang, Xiaona Hu, Yunqin Zhang, Zhenyan Miao, Can Xie, Xiangzhao Meng, Jie Deng, Jiangqi Wen, Kirankumar S Mysore, Florian Frugier, Tao Wang, Jiangli Dong
Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling...
October 2016: Plant Physiology
Wenbin Liao, Yiling Yang, Yayun Li, Gan Wang, Ming Peng
Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission...
2016: Scientific Reports
Luming Yao, Yina Jiang, Xinxin Lu, Biao Wang, Pei Zhou, Tianlong Wu
Few regulators for drought tolerance have been identified in Lablab purpureus which is a multipurpose leguminous crop. The transcription factor MYB is involved in regulatory networks in response to abiotic and biotic stresses in plants. A novel R2R3-MYB factor in L. purpureus has been identified. An suppression subtraction hybridization (SSH) library was constructed using root tissues of L. purpureus MEIDOU 2012 from well-watered and water-stress treatments that were subjected to drought stress for 10 days...
October 2016: Molecular Biology Reports
Meng-Jun Li, Yu Qiao, Ya-Qing Li, Zhan-Liang Shi, Nan Zhang, Cai-Li Bi, Jin-Kao Guo
We isolated the TaMYBsm1 genes, encoding R2R3-type MYB proteins in common wheat, aimed to uncover the possible molecular mechanisms related to drought response. The TaMYBsm1 genes, TaMYBsm1-A, TaMYBsm1-B and TaMYBsm1-D, were isolated and analyzed from the common wheat cultivar Shimai 15. Their expression patterns under PEG 6000 and mannitol were monitored by semi-quantitative RT-PCR and β-glucuronidase (Gus) assay. The function of TaMYBsm1-D under drought stress in transgenic Arabidopsis plants was investigated, and the germination rate, water loss rate, as well as the proline and malondialdehyde (MDA) content were compared with that in wild type (WT) plants...
August 19, 2016: Journal of Plant Research
Wenjun Huang, A B M Khaldun, Jianjun Chen, Chanjuan Zhang, Haiyan Lv, Ling Yuan, Ying Wang
Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants...
2016: Frontiers in Plant Science
Md Kamrul Hasan, Congcong Liu, Fanan Wang, Golam Jalal Ahammed, Jie Zhou, Ming-Xing Xu, Jing-Quan Yu, Xiao-Jian Xia
Glutathione (GSH) plays a critical role in plant growth, development and responses to stress. However, the mechanism by which GSH regulates tolerance to cadmium (Cd) stress still remains unclear. Here we show that inhibition of GSH biosynthesis by buthionine sulfoximine (BSO) aggravated Cd toxicity by increasing accumulation of reactive oxygen species (ROS) and reducing contents of nitric oxide (NO) and S-nitrosothiol (SNO) in tomato roots. In contrast, exogenous GSH alleviated Cd toxicity by substantially minimizing ROS accumulation and increasing contents of NO and SNO, and activities of antioxidant enzymes that eventually reduced oxidative stress...
October 2016: Chemosphere
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"