Read by QxMD icon Read

"Cardiac tissue engineering"

Jia-Ling Ruan, Nathaniel L Tulloch, Maria V Razumova, Mark Saiget, Veronica Muskheli, Lil Pabon, Hans Reinecke, Michael Regnier, Charles E Murry
BACKGROUNDS: -Tissue engineering enables the generation of functional human cardiac tissue using cells derived in vitro in combination with biocompatible materials. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes provide a cell source for cardiac tissue engineering; however, their immaturity limits their potential applications. Here we sought to study the effect of mechanical conditioning and electrical pacing on the maturation of hiPSC-derived cardiac tissues. METHODSS: -Cardiomyocytes derived from hiPSCs were used to generate collagen-based bioengineered human cardiac tissue...
October 13, 2016: Circulation
Yi Li, Xiaoli Shi, Lei Tian, Hongyu Sun, Yujing Wu, Xia Li, Jianjun Li, Yujie Wei, Xinxiao Han, Jiao Zhang, Xiaowei Jia, Rui Bai, Limin Jing, Peng Ding, Huiliang Liu, Dong Han
A schematic for the mechanism of accelerating the assembly of intercalated discs (IDs) in cardiac myocytes regulated by gold nanoparticles (AuNPs) is presented. AuNPs with local nanoscale stiffness in the substrate activate β1-integrin signaling, which mediates the activation of integrin-linked kinase (ILK) and its downstream signal kinase by stimulating expression of the transcription factors GATA4 and MEF-2c.
October 10, 2016: Advanced Materials
Li Wang, Xiaoqing Zhang, Cong Xu, Hui Liu, Jianhua Qin
Human induced pluripotent stem cells (hiPSCs) and appropriate scaffolds are of great interest in cardiac tissue engineering. In this work, we present a simple and new strategy to produce a thin collagen membrane with a natural microstructure from porcine tendons and reconstruct the functional cardiac tissues by recellularizing hiPSC-derived cardiomyocytes onto the membrane, for the first time. The collagen membrane maintained its intact properties after decellularization, the composition of which was identified as collagen I...
October 18, 2016: Biomaterials Science
Andrea V Bagdadi, Maryam Safari, Prachi Dubey, Pooja Basnett, Panagiotis Sofokleous, Eleanor Humphrey, Ian Locke, Mohan Edirisinghe, Cesare Terracciano, Aldo R Boccaccini, Jonathan C Knowles, Sian E Harding, Ipsita Roy
Cardiac tissue engineering (CTE) is currently a prime focus of research due to an enormous clinical need. In this work, a novel functional material, Poly(3-hydroxyoctanoate), P(3HO), a medium chain length polyhydroxyalkanoate (PHA), produced using bacterial fermentation, was studied as a new potential material for CTE. Engineered constructs with improved mechanical properties, crucial for supporting the organ during new tissue regeneration, and enhanced surface topography, to allow efficient cell adhesion and proliferation, were fabricated...
September 30, 2016: Journal of Tissue Engineering and Regenerative Medicine
Tze-Wen Chung, Hsin-Yu Lo, Tzung-Han Chou, Jan-Hou Chen, Shoei-Shen Wang
Bone marrow-derived mesenchymal stem cell microtissues (BMSCMT) enhanced cardiomyogenesis in vitro and cardiac repairs of myocardial infarcted hearts in vivo are documented. Producing human BMSCMT onto patches in vitro for cardiac tissue engineering has not been reported. For possibly producing human bone marrow-derived mesenchymal stem cell microtissues (hBMSCMT) on an elastic silk fibroin (SF)-poly(ε-caprolactone) (PCL) based patches is hereby designed. After an elastic SF-PCL (SP) patch is fabricated, hyaluronic acid (HA)/SF-PCL(HSP) and HA-GRGD/SF-PCL(HGSP) patches are fabricated by photochemically grafting HA and HA-GRGD onto SP surfaces...
September 28, 2016: Macromolecular Bioscience
Yaowen Liu, Jinfu Lu, Guisen Xu, Jiaojun Wei, Zhibin Zhang, Xiaohong Li
The key to addressing the challenges facing cardiac tissue engineering is the integration of physical, chemical, and electrical cues into scaffolds. Aligned and conductive scaffolds have been fabricated as synthetic microenvironments to improve the function of cardiomyocytes. However, up to now, the influence of conductive capability and inner structure of fibrous scaffolds have not been determined on the cardiomyocyte morphologies and beating patterns. In the current study, highly aligned fibers were fabricated with loaded up to 6% of carbon nanotubes (CNTs) to modulate the electrical conductivity, while blend and coaxial electrospinning were utilized to create a bulk distribution of CNTs in fiber matrices and a spatial embedment in fiber cores, respectively...
December 1, 2016: Materials Science & Engineering. C, Materials for Biological Applications
M Tallawi, D Dippold, R Rai, D D'Atri, J A Roether, D W Schubert, E Rosellini, F B Engel, A R Boccaccini
Nano- and micro-scale topographical features play a critical role in the induction and maintenance of various cellular properties and functions, including morphology, adhesion, gene regulation, and cell-to-cell communication. In addition, recent studies have indicated that the structure and function of heart tissue are also sensitive to mechanical cues at the nano- and micro-scale. Although fabrication methods exist for generating topographical features on polymeric scaffolds for cell culture, current techniques, especially those with nano-scale resolution, are typically complex, prohibitively expensive and not accessible to most biology laboratories...
December 1, 2016: Materials Science & Engineering. C, Materials for Biological Applications
Carolina Gálvez-Montón, Ramon Bragós, Carolina Soler-Boti Ja, Idoia Díaz-Güemes, Cristina Prat-Vidal, Verónica Crisóstomo, Francisco M Sánchez-Margallo, Aida Llucià-Valldeperas, Paco Bogónez-Franco, Isaac Perea-Gil, Santiago Roura, Antoni Bayes-Genis
: : Cardiac tissue engineering, which combines cells and biomaterials, is promising for limiting the sequelae of myocardial infarction (MI). We assessed myocardial function and scar evolution after implanting an engineered bioactive impedance graft (EBIG) in a swine MI model. The EBIG comprises a scaffold of decellularized human pericardium, green fluorescent protein-labeled porcine adipose tissue-derived progenitor cells (pATPCs), and a customized-design electrical impedance spectroscopy (EIS) monitoring system...
September 2, 2016: Stem Cells Translational Medicine
Antoni Bayés-Genís, Carolina Gálvez-Montón, Santiago Roura
No abstract text is available yet for this article.
August 16, 2016: Journal of the American College of Cardiology
A C Silva, S C Rodrigues, J Caldeira, A M Nunes, V Sampaio-Pinto, T P Resende, M J Oliveira, M A Barbosa, S Thorsteinsdóttir, D S Nascimento, P Pinto-do-Ó
A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents...
October 2016: Biomaterials
Mahshid Kharaziha, Adnan Memic, Mohsen Akbari, David A Brafman, Mehdi Nikkhah
On page 1533 M. Nikkhah and co-workers review tissue engineering strategies in the treatment of cardiac diseases with emphasis on the use of nanoenabled approaches (e.g. nanoparticles, nanotopographies) in combination with stem cells for regeneration and repair of injured myocardium upon myocardial infarction.
July 2016: Advanced Healthcare Materials
Hidemasa Oh, Hiroshi Ito, Shunji Sano
Heart failure remains the leading cause of death worldwide, and is a burgeoning problem in public health due to the limited capacity of postnatal hearts to self-renew. The pathophysiological changes in injured hearts can sometimes be manifested as scar formation or myocardial degradation, rather than supplemental muscle regeneration to replenish lost tissue during the healing processes. Stem cell therapies have been investigated as a possible treatment approach for children and adults with potentially fatal cardiovascular disease that does not respond to current medical therapies...
June 21, 2016: Journal of Cardiology
Brenda M Ogle, Nenad Bursac, Ibrahim Domian, Ngan F Huang, Philippe Menasché, Charles E Murry, Beth Pruitt, Milica Radisic, Joseph C Wu, Sean M Wu, Jianyi Zhang, Wolfram-Hubertus Zimmermann, Gordana Vunjak-Novakovic
The promise of cardiac tissue engineering is in the ability to recapitulate in vitro the functional aspects of a healthy heart and disease pathology as well as to design replacement muscle for clinical therapy. Parts of this promise have been realized; others have not. In a meeting of scientists in this field, five central challenges or "big questions" were articulated that, if addressed, could substantially advance the current state of the art in modeling heart disease and realizing heart repair.
June 8, 2016: Science Translational Medicine
Yujing Wu, Xiaoli Shi, Yi Li, Lei Tian, Rui Bai, Yujie Wei, Dong Han, Huiliang Liu, Jianxun Xu
Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen...
December 2016: Nanoscale Research Letters
Yu Song, Cheng Zhang, Jinxiang Zhang, Ning Sun, Kun Huang, Huili Li, Zheng Wang, Kai Huang, Lin Wang
UNLABELLED: Acute myocardial infarction (MI) leads to morbidity and mortality due to cardiac dysfunction. Here we identify sericin, a silk-derived protein, as an injectable therapeutic biomaterial for the minimally invasive MI repair. For the first time, sericin prepared in the form of an injectable hydrogel has been utilized for cardiac tissue engineering and its therapeutical outcomes evaluated in a mouse MI model. The injection of this sericin hydrogel into MI area reduces scar formation and infarct size, increases wall thickness and neovascularization, and inhibits the MI-induced inflammatory responses and apoptosis, thereby leading to a significant functional improvement...
September 1, 2016: Acta Biomaterialia
Merve Erginer, Ayca Akcay, Binnaz Coskunkan, Tunc Morova, Deniz Rende, Seyda Bucak, Nihat Baysal, Rahmi Ozisik, Mehmet S Eroglu, Mehmet Agirbasli, Ebru Toksoy Oner
Chemical derivatives of levan from Halomonas smyrnensis AAD6(T) with low, medium and high levels of sulfation were synthesized and characterized by FTIR and 2D-NMR. Sulfated levan samples were found to exhibit anticoagulation activity via the intrinsic pathway like heparin in a dose-dependent manner. Exceptionally high heparin equivalent activity of levan sulfate was shown to proceed via thrombin inhibition where decreased Factor Xa activity with increasing concentration was observed in antithrombin tests and above a certain concentration, levan sulfate showed a better inhibitor activity than heparin...
September 20, 2016: Carbohydrate Polymers
Su Ryon Shin, Claudio Zihlmann, Mohsen Akbari, Pribpandao Assawes, Louis Cheung, Kaizhen Zhang, Vijayan Manoharan, Yu Shrike Zhang, Mehmet Yüksekkaya, Kai-Tak Wan, Mehdi Nikkhah, Mehmet R Dokmeci, Xiaowu Shirley Tang, Ali Khademhosseini
Biomaterials currently used in cardiac tissue engineering have certain limitations, such as lack of electrical conductivity and appropriate mechanical properties, which are two parameters playing a key role in regulating cardiac cell behavior. Here, the myocardial tissue constructs are engineered based on reduced graphene oxide (rGO)-incorporated gelatin methacryloyl (GelMA) hybrid hydrogels. The incorporation of rGO into the GelMA matrix significantly enhances the electrical conductivity and mechanical properties of the material...
July 2016: Small
Josue Chery, Joshua Wong, Shan Huang, Shuyun Wang, Ming-Sing Si
Hypoplastic left heart syndrome (HLHS), the most severe and common form of single ventricle congenital heart lesions, is characterized by hypoplasia of the mitral valve, left ventricle (LV), and all LV outflow structures. While advances in surgical technique and medical management have allowed survival into adulthood, HLHS patients have severe morbidities, decreased quality of life, and a shortened lifespan. The single right ventricle (RV) is especially prone to early failure because of its vulnerability to chronic pressure overload, a mode of failure distinct from ischemic cardiomyopathy encountered in acquired heart disease...
June 28, 2016: Tissue Engineering. Part B, Reviews
Mahshid Kharaziha, Adnan Memic, Mohsen Akbari, David A Brafman, Mehdi Nikkhah
Cardiac diseases are the most prevalent causes of mortality in the world, putting a major economic burden on global healthcare system. Tissue engineering strategies aim at developing efficient therapeutic approaches to overcome the current challenges in prolonging patients survival upon cardiac diseases. The integration of advanced biomaterials and stem cells has offered enormous promises for regeneration of damaged myocardium. Natural or synthetic biomaterials have been extensively used to deliver cells or bioactive molecules to the site of injury in heart...
July 2016: Advanced Healthcare Materials
Rajesh Lakshmanan, Priyadharshini Kumaraswamy, Uma Maheswari Krishnan, Swaminathan Sethuraman
The major loss of tissue extracellular matrix (ECM) after myocardial ischemia is a serious burden that gradually leads to heart failure. Due to lack of available treatment methods to restore the cardiac function, various research strategies have come up to treat the ischemic myocardium. However these have met with limited success due to the complexity of the cardiac tissue, which exhibits a nanofibrous collagenous matrix with spatio-temporal localization of a combination of growth factors. To mimic the topographical and chemical cues of the natural cardiac tissue, we have fabricated a growth factor embedded nanofibrous scaffold through electrospinning...
August 2016: Biomaterials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"