Read by QxMD icon Read


Rodrigo Siqueira-Batista, Camila Ribeiro Souza, Polyana Mendes Maia, Sávio Lana Siqueira
Introduction: The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. Objective: To present review of the ethical aspects of robot use in surgery. Method: Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Results: Of the citations obtained, were selected 17 articles, which were used for the preparation of the article...
November 2016: Arquivos Brasileiros de Cirurgia Digestiva: ABCD, Brazilian Archives of Digestive Surgery
Ali Newaz Bahar, Mohammad Maksudur Rahman, Nur Mohammad Nahid, Md Kamrul Hassan
This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.
February 2017: Data in Brief
Taohong Zhang, Shaonan Zhou, Xiaohao Gao, Zhiyong Yang, Leran Sun, Dezheng Zhang
: A multi-scale model using the Cellular Automata (CA) and kinetic Monte Carlo (KMC) methods is presented to simulate the degradation process of bioresorbable polyesters such as polylactide (PLA), polyglycolide (PGA) and their copolymers. The model considers the underlying chemical and physical events such as polymer chain scission, oligomer production, crystallisation induced by polymer chain scissions, oligomer diffusion and microstructure evolution due to erosion of the small chains...
December 22, 2016: Acta Biomaterialia
A Gromer, F Thalmann, P Hébraud, Y Holl
Following our previous contribution ( Gromer, A. et al. Langmuir 2015 , 31 , 10983 - 10994 ) presenting a new simulation tool devoted to particle distributions in drying latex films, this Article describes the prediction of surfactant concentration profiles in the vertical direction during the complete film formation process. The simulation is inspired by cellular automata and equations by Routh and co-workers. It includes effects that were not considered before: surfactant convection by water and surfactant desorption upon particle deformation...
January 5, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Fereydoun Naghibi, Mahmoud Reza Delavar, Bryan Pijanowski
Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback...
December 14, 2016: Sensors
A G Garcia, W A C Godoy
Studies of the influence of biological parameters on the spatial distribution of lepidopteran insects can provide useful information for managing agricultural pests, since the larvae of many species cause serious impacts on crops. Computational models to simulate the spatial dynamics of insect populations are increasingly used, because of their efficiency in representing insect movement. In this study, we used a cellular automata model to explore different patterns of population distribution of Spodoptera frugiperda (J...
December 10, 2016: Neotropical Entomology
Hasan Hayat, Krisztian Kohary, C David Wright
The scaling potential of 'mushroom-type' phase-change memory devices is evaluated, down to single-nanometre dimensions, using physically realistic simulations that combine electro-thermal modelling with a Gillespie Cellular Automata phase-transformation approach. We found that cells with heater contact sizes as small as 6 nm could be successfully amorphized and re-crystallized (RESET and SET) using moderate excitation voltages. However, to enable the efficient formation of amorphous domes during RESET in small cells (heater contact diameters of 10 nm or less), it was necessary to improve the thermal confinement of the cell to reduce heat loss via the electrodes...
January 20, 2017: Nanotechnology
Gisele Helena Barboni Miranda, Jeaneth Machicao, Odemir Martinez Bruno
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks...
November 22, 2016: Scientific Reports
Cándido Caballero-Gil, Pino Caballero-Gil, Jezabel Molina-Gil
This work proposes an adaptive recommendation mechanism for smart parking that takes advantage of the popularity of smartphones and the rise of the Internet of Things. The proposal includes a centralized system to forecast available indoor parking spaces, and a low-cost mobile application to obtain data of actual and predicted parking occupancy. The described scheme uses data from both sources bidirectionally so that the centralized forecast system is fed with data obtained with the distributed system based on smartphones, and vice versa...
November 15, 2016: Sensors
Jing Li, T C H Liew
We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.
October 31, 2016: Optics Express
Giovanni S Carmantini, Peter Beim Graben, Mathieu Desroches, Serafim Rodrigues
Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata...
January 2017: Neural Networks: the Official Journal of the International Neural Network Society
Desheng Liu, Zhiping Huang, Yimeng Zhang, Xiaojun Guo, Shaojing Su
Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2)...
2016: PloS One
Brodie A J Lawson, Graeme J Pettet
The Glazier-Graner-Hogeweg (GGH) model is a cellular automata framework for representing the time evolution of cellular systems, appealing because unlike many other individual-cell-based models it dynamically simulates changes in cell shape and size. Proliferation has seen some implementation into this modelling framework, but without consensus in the literature as to how this behaviour is best represented. Additionally, the majority of published GGH model implementations which feature proliferation do so in order to simulate a certain biological situation where mitosis is important, but without analysis of how these proliferation routines operate on a fundamental level...
January 2017: Bulletin of Mathematical Biology
Adriano Bonforti, Salva Duran-Nebreda, Raúl Montañez, Ricard Solé
Spatial self-organization emerges in distributed systems exhibiting local interactions when nonlinearities and the appropriate propagation of signals are at work. These kinds of phenomena can be modeled with different frameworks, typically cellular automata or reaction-diffusion systems. A different class of dynamical processes involves the correlated movement of agents over space, which can be mediated through chemotactic movement or minimization of cell-cell interaction energy. A classic example of the latter is given by the formation of spatially segregated assemblies when cells display differential adhesion...
October 2016: Chaos
Lucia Russo, Paola Russo, Constantinos I Siettos
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation...
2016: PloS One
Hamidreza Kavianpour, Mahdi Vasighi
Nowadays, having knowledge about cellular attributes of proteins has an important role in pharmacy, medical science and molecular biology. These attributes are closely correlated with the function and three-dimensional structure of proteins. Knowledge of protein structural class is used by various methods for better understanding the protein functionality and folding patterns. Computational methods and intelligence systems can have an important role in performing structural classification of proteins. Most of protein sequences are saved in databanks as characters and strings and a numerical representation is essential for applying machine learning methods...
October 24, 2016: Amino Acids
Andrew Palii, Boris Tsukerblat
In this article we consider two coupled tetrameric mixed-valence (MV) units accommodating electron pairs, which play the role of cells in molecular quantum cellular automata. It is supposed that the Coulombic interaction between instantly localized electrons within the cell markedly inhibits the transfer processes between the redox centers. Under this condition, as well as due to the vibronic localization of the electron pair, the cell can encode binary information, which is controlled by neighboring cells...
October 25, 2016: Dalton Transactions: An International Journal of Inorganic Chemistry
Yousef Sakieh, Abdolrassoul Salmanmahiny, Seyed Hamed Mirkarimi
Continuous surface of urbanization suitability, as an input to many urban growth models (UGM), has a significant role on a proper calibration process. The present study evaluates and compares the simulation success of the Cellular Automata-Markov Chain (CA-MC) model through multiple methods. For this, a series of mapping algorithms are applied ranging from empirical methods such as multi-criteria evaluation (MCE) to statistical algorithms without spatially explicit suitability mapping rules such as logistic regression (LR) and multi-layer perceptron (MLP) neural network and finally statistical and spatially explicit rule-based methods such as SLEUTH-Genetic Algorithm (SLEUTH-GA) model...
November 2016: Environmental Monitoring and Assessment
Bhoopal Rao Gangadari, Shaik Rafi Ahamed
In biomedical, data security is the most expensive resource for wireless body area network applications. Cryptographic algorithms are used in order to protect the information against unauthorised access. Advanced encryption standard (AES) cryptographic algorithm plays a vital role in telemedicine applications. The authors propose a novel approach for design of substitution bytes (S-Box) using second-order reversible one-dimensional cellular automata (RCA(2)) as a replacement to the classical look-up-table (LUT) based S-Box used in AES algorithm...
September 2016: Healthcare Technology Letters
Bhoopal Rao Gangadari, Shaik Rafi Ahamed
In this paper, we presented a novel approach of low energy consumption architecture of S-Box used in Advanced Encryption Standard (AES) algorithm using programmable second order reversible cellular automata (RCA (2)). The architecture entails a low power implementation with minimal delay overhead and the performance of proposed RCA (2) based S-Box in terms of security is evaluated using the cryptographic properties such as nonlinearity, correlation immunity bias, strict avalanche criteria, entropy and also found that the proposed architecture is secure enough for cryptographic applications...
December 2016: Journal of Medical Systems
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"