Read by QxMD icon Read

Cholinergic interneurons

Nadav Yayon, Amir Dudai, Nora Vrieler, Oren Amsalem, Michael London, Hermona Soreq
Three-dimensional structures in biological systems are routinely evaluated using large image stacks acquired from fluorescence microscopy; however, analysis of such data is muddled by variability in the signal across and between samples. Here, we present Intensify3D: a user-guided normalization algorithm tailored for overcoming common heterogeneities in large image stacks. We demonstrate the use of Intensify3D for analyzing cholinergic interneurons of adult murine brains in 2-Photon and Light-Sheet fluorescence microscopy, as well as of mammary gland and heart tissues...
March 9, 2018: Scientific Reports
X A Perez, T Bordia, M Quik
Cholinergic signaling plays a key role in regulating striatal function. The principal source of acetylcholine in the striatum is the cholinergic interneurons which, although low in number, densely arborize to modulate striatal neurotransmission. This modulation occurs via strategically positioned nicotinic and muscarinic acetylcholine receptors that influence striatal dopamine, GABA and other neurotransmitter release. Cholinergic interneurons integrate multiple striatal synaptic inputs and outputs to regulate motor activity under normal physiological conditions...
February 28, 2018: Journal of Neural Transmission
Srinidhi Desikan, David E Koser, Angela Neitz, Hannah Monyer
The entorhinal cortex (EC) plays a pivotal role in processing and conveying spatial information to the hippocampus. It has long been known that EC neurons are modulated by cholinergic input from the medial septum. However, little is known as to how synaptic release of acetylcholine affects the different cell types in EC. Here we combined optogenetics and patch-clamp recordings to study the effect of cholinergic axon stimulation on distinct neurons in EC. We found dense cholinergic innervations that terminate in layer I and II (LI and LII)...
February 27, 2018: Proceedings of the National Academy of Sciences of the United States of America
Maxime Assous, James M Tepper
The striatum constitutes the main input structure of the basal ganglia and receives two major excitatory glutamatergic inputs, from the cortex and the thalamus. Excitatory cortico- and thalamo-striatal connections innervate the principal neurons of the striatum, the spiny projection neurons (SPNs), which constitute the main cellular input as well as the only output of the striatum. In addition, corticostriatal and thalamostriatal inputs also innervate striatal interneurons. Some of these inputs have been very well studied, e...
February 26, 2018: European Journal of Neuroscience
Dibyadeep Datta, Amy F T Arnsten
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC), and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought...
February 22, 2018: ACS Chemical Neuroscience
Robert Lindroos, Matthijs C Dorst, Kai Du, Marko Filipović, Daniel Keller, Maya Ketzef, Alexander K Kozlov, Arvind Kumar, Mikael Lindahl, Anu G Nair, Juan Pérez-Fernández, Sten Grillner, Gilad Silberberg, Jeanette Hellgren Kotaleski
The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors...
2018: Frontiers in Neural Circuits
Juhee Haam, Jingheng Zhou, Guohong Cui, Jerrel L Yakel
Neuromodulation of neural networks, whereby a selected circuit is regulated by a particular modulator, plays a critical role in learning and memory. Among neuromodulators, acetylcholine (ACh) plays a critical role in hippocampus-dependent memory and has been shown to modulate neuronal circuits in the hippocampus. However, it has remained unknown how ACh modulates hippocampal output. Here, using in vitro and in vivo approaches, we show that ACh, by activating oriens lacunosum moleculare (OLM) interneurons and therefore augmenting the negative-feedback regulation to the CA1 pyramidal neurons, suppresses the circuit from the hippocampal area CA1 to the deep-layer entorhinal cortex (EC)...
February 7, 2018: Proceedings of the National Academy of Sciences of the United States of America
Aurina Arnatkevic Iūtė, Ben D Fulcher, Roger Pocock, Alex Fornito
Studies of nervous system connectivity, in a wide variety of species and at different scales of resolution, have identified several highly conserved motifs of network organization. One such motif is a heterogeneous distribution of connectivity across neural elements, such that some elements act as highly connected and functionally important network hubs. These brain network hubs are also densely interconnected, forming a so-called rich club. Recent work in mouse has identified a distinctive transcriptional signature of neural hubs, characterized by tightly coupled expression of oxidative metabolism genes, with similar genes characterizing macroscale inter-modular hub regions of the human cortex...
February 12, 2018: PLoS Computational Biology
Joanna Urban-Ciecko, Jean-Sebastien Jouhanneau, Stephanie E Myal, James F A Poulet, Alison L Barth
Sleep, waking, locomotion, and attention are associated with cell-type-specific changes in neocortical activity. The effect of brain state on circuit output requires understanding of how neuromodulators influence specific neuronal classes and their synapses, with normal patterns of neuromodulator release from endogenous sources. We investigated the state-dependent modulation of a ubiquitous feedforward inhibitory motif in mouse sensory cortex, local pyramidal (Pyr) inputs onto somatostatin (SST)-expressing interneurons...
February 7, 2018: Neuron
Chi Zhang, Wan-Qing Yu, Akina Hoshino, Jing Huang, Fred Rieke, Thomas A Reh, Rachel O L Wong
Choline acetyltransferase (ChAT) expressing retinal amacrine cells are present across vertebrates. These interneurons play important roles in the development of retinal projections to the brain and in motion detection, specifically in generating direction-selective responses to moving stimuli. ChAT amacrine cells typically comprise two spatially segregated populations that form circuits in the 'ON' or 'OFF' synaptic layers of the inner retina. This stereotypic arrangement is also found across the adult human retina, with the notable exception that ChAT expression is evident in the ON but not OFF layer of the fovea, a region specialized for high-acuity vision...
February 6, 2018: Journal of Comparative Neurology
Maria Bertuzzi, Konstantinos Ampatzis
While cholinergic neuromodulation is important for locomotor circuit operation, the specific neuronal mechanisms that acetylcholine employs to regulate and fine-tune the speed of locomotion are largely unknown. Here, we show that cholinergic interneurons are present in the zebrafish spinal cord and differentially control the excitability of distinct classes of motoneurons (slow, intermediate and fast) in a muscarinic dependent manner. Moreover, we reveal that m2-type muscarinic acetylcholine receptors (mAChRs) are present in fast and intermediate motoneurons, but not in the slow motoneurons, and that their activation decreases neuronal firing...
January 31, 2018: Scientific Reports
Nabil El Massri, Karen M Cullen, Sebastian Stefani, Cécile Moro, Napoleon Torres, Alim-Louis Benabid, John Mitrofanis
In this study, we examined the cellular distribution of encephalopsin (opsin 3; OPN3) expression in the striatum of non-human primates. In addition, because of our long standing interest in Parkinson's disease and neuroprotection, we examined whether parkinsonian (MPTP; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) insult and/or photobiomodulation (670 nm) had any impact on encephalopsin expression in this key area of the basal ganglia. Striatal sections of control naïve monkeys, together with those that were either MPTP- and/or photobiomodulation-treated were processed for immunohistochemistry...
January 29, 2018: Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale
Rafael Koerich Varaschin, Guillaume Osterstock, Charles Ducrot, Sakari Leino, Marie-Josée Bourque, Marco A M Prado, Vania Ferreira Prado, Outi Salminen, Saara Rannanpää Née Nuutinen, Louis-Eric Trudeau
Histamine H3 receptors are widely distributed Gi-coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry...
January 24, 2018: Neuroscience
Shangbang Gao, Sihui Asuka Guan, Anthony D Fouad, Jun Meng, Taizo Kawano, Yung-Chi Huang, Yi Li, Salvador Alcaire, Wesley Hung, Yangning Lu, Yingchuan Billy Qi, Yishi Jin, Mark Alkema, Christopher Fang-Yen, Mei Zhen
Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion...
January 23, 2018: ELife
Sho Aoki, Andrew W Liu, Yumiko Akamine, Aya Zucca, Stefano Zucca, Jeffery R Wickens
Behavioral flexibility is crucial for adaptive behavior, and recent evidence suggests that cholinergic interneurons of the striatum play a distinct role. Previous studies of cholinergic function have focused on strategy switching by the dorsomedial or ventral striatum. We here investigated whether cholinergic interneurons in the dorsolateral striatum play a similar role at the level of switching of habitual responses. Because the dorsolateral striatum is particularly involved in habitual responding, we developed a habit substitution task that involved switching habitual lever-press responses to one side to another...
January 23, 2018: European Journal of Neuroscience
Victoria Marie Spruance, Lyandysha Viktorovna Zholudeva, Kristiina M Hormigo, Margo L Randelman, Tatiana Bezdudnaya, Vitaliy Marchenko, Michael A Lane
Cervical spinal cord injuries (SCI) result in devastating functional consequences, including respiratory dysfunction. This is largely due to the disruption of phrenic pathways, which control the diaphragm. Recent work has identified spinal interneurons as possible contributors to respiratory neuroplasticity. The present work investigated whether transplantation of developing spinal cord tissue, inherently rich in interneuronal progenitors, could provide a population of new neurons and growth permissive substrate to facilitate plasticity and formation of novel relay circuits to restore input to the partially denervated phrenic motor circuit...
January 2, 2018: Journal of Neurotrauma
He Liu, Wenxing Yang, Taihong Wu, Fengyun Duan, Edward Soucy, Xin Jin, Yun Zhang
Sensorimotor integration regulates goal-directed movements. We study the signaling mechanisms underlying sensorimotor integration in C. elegans during olfactory steering, when the sinusoidal movements of the worm generate an in-phase oscillation in the concentration of the sampled odorant. We show that cholinergic neurotransmission encodes the oscillatory sensory response and the motor state of head undulations by acting through an acetylcholine-gated channel and a muscarinic acetylcholine receptor, respectively...
December 21, 2017: Neuron
Zhenglin Gu, Georgia M Alexander, Serena M Dudek, Jerrel L Yakel
Although much progress has been made in understanding type II theta rhythm generation under urethane anesthesia, less is known about the mechanisms underlying type I theta generation during active exploration. To better understand the contributions of cholinergic and NMDA receptor activation to type I theta generation, we recorded hippocampal theta oscillations from freely moving mice with local infusion of cholinergic or NMDA receptor antagonists to either the hippocampus or the entorhinal cortex (EC). We found that cholinergic receptors in the hippocampus, but not the EC, and NMDA receptors in the EC, but not the hippocampus, are critical for open-field theta generation and Y-maze performance...
December 19, 2017: Cell Reports
Rasha Elghaba, Enrico Bracci
Striatal low-threshold spike interneurons (LTSIs) are tonically active neurons that express GABA and nitric oxide synthase and are involved in information processing as well as neurovascular coupling. While mu opioid receptors (MORs) and their ligand encephalin are prominent in the striatum, their action on LTSIs has not been investigated. We addressed this issue carrying out whole-cell recordings in transgenic mice in which the NPY-expressing neurons are marked with green fluorescent protein (GFP). The MOR agonist (D-Ala(2), N-MePhe(4), Gly-ol)-enkephalin (DAMGO) produced dual effects on subpopulations of LTSIs...
2017: Frontiers in Cellular Neuroscience
Luciana R Frick, Maximiliano Rapanelli, Kantiya Jindachomthong, Paul Grant, James F Leckman, Susan Swedo, Kyle Williams, Christopher Pittenger
Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus, or PANDAS, is a syndrome of acute childhood onset of obsessive-compulsive disorder and other neuropsychiatric symptoms in the aftermath of an infection with Group A beta-hemolytic Streptococcus (GABHS). Its pathophysiology remains unclear. PANDAS has been proposed to result from cross-reactivity of antibodies raised against GABHS with brain antigens, but the targets of these antibodies are unclear and may be heterogeneous. We developed an in vivo assay in mice to characterize the cellular targets of antibodies in serum from individuals with PANDAS...
March 2018: Brain, Behavior, and Immunity
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"