Read by QxMD icon Read

Inhibition BRCA

Xuan Zhou, Wei Zhu, Margaret Nowicki, Shida Miao, Haitao Cui, Benjamin Holmes, Robert I Glazer, Lijie Grace Zhang
Metastasis is one of the deadliest consequences of breast cancer, with bone being one of the primary sites of occurrence. Insufficient 3D biomimetic models currently exist to replicate this process in vitro. In this study, we developed a biomimetic bone matrix using 3D bioprinting technology to investigate the interaction between breast cancer (BrCa) cells and bone stromal cells (fetal osteoblasts and human bone marrow mesenchymal stem cells (MSCs)). A tabletop stereolithography 3D bioprinter was employed to fabricate a series of bone matrices consisting of osteoblasts/MSCs encapsulated in gelatin methacrylate (GelMA) hydrogel with nanocrystalline hydroxyapatite (nHA)...
October 21, 2016: ACS Applied Materials & Interfaces
Olga Villamar Cruz, Tatiana Y Prudnikova, Daniela Araiza-Olivera, Carlos Perez-Plasencia, Neil Johnson, Andrea J Bernhardy, Michael Slifker, Catherine Renner, Jonathan Chernoff, Luis E Arias-Romero
Cells that are deficient in homologous recombination, such as those that have mutations in any of the Fanconi Anemia (FA)/BRCA genes, are hypersensitive to inhibition of poly(ADP-ribose) polymerase (PARP). However, FA/BRCA-deficient tumors represent a small fraction of breast cancers, which might restrict the therapeutic utility of PARP inhibitor monotherapy. The gene encoding the serine-threonine protein kinase p21-activated kinase 1 (PAK1) is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors...
October 11, 2016: Oncotarget
Jennifer McLachlan, Angela George, Susana Banerjee
ABSTRACTRecent advances in our understanding of the molecular biology of epithelial ovarian cancer have led to the development of a number of targeted therapies, including poly-ADP-ribose polymerase (PARP) inhibitors. PARP inhibitors are a novel class of therapeutic agents that target tumors with deficiencies in the homologous recombination DNA repair pathway. Early studies have shown significant efficacy for PARP inhibitors in patients with germline BRCA1/2 mutations. It has become evident that BRCA wild-type patients with other defects in the homologous recombination repair pathway benefit from this therapeutic approach...
September 24, 2016: Tumori
Junko Murai, Ying Feng, Guoying K Yu, Yuanbin Ru, Sai-Wen Tang, Yuqiao Shen, Yves Pommier
Poly(ADP-ribose) polymerase inhibitors (PARPIs) kill cancer cells by trapping PARP1 and PARP2. Talazoparib, the most potent PARPI inhibitor (PARPI), exhibits remarkable selectivity among the NCI-60 cancer cell lines beyond BRCA inactivation. Our genomic analyses reveal high correlation between response to talazoparib and Schlafen 11 (SLFN11) expression. Causality was established in four isogenic SLFN11-positive and -negative cell lines and extended to olaparib. Response to the talazoparib-temozolomide combination was also driven by SLFN11 and validated in 36 small cell lung cancer cell lines, and in xenograft models...
September 27, 2016: Oncotarget
Rowan E Miller, Jonathan A Ledermann
Poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors have shown clinical activity in epithelial ovarian cancer, leading both the US Food and Drug Administration (FDA) and the European Medicines Agency to approve olaparib for tumors characterized by BRCA1 and BRCA2 mutations. However, it is becoming increasingly evident that tumors that share molecular features with BRCA-mutant tumors-a concept known as BRCAness-also may exhibit defective homologous recombination DNA repair, and therefore will respond to PARP inhibition...
September 2016: Clinical Advances in Hematology & Oncology: H&O
Anselmo Papa, Davide Caruso, Martina Strudel, Silverio Tomao, Federica Tomao
BACKGROUND: Despite standard treatment for epithelial ovarian cancer (EOC), that involves cytoreductive surgery followed by platinum-based chemotherapy, and initial high response rates to these, up to 80 % of patients experience relapses with a median progression-free survival of 12-18 months. There remains an urgent need for novel targeted therapies to improve clinical outcomes in ovarian cancer. Of the many targeted therapies currently under evaluation, the most promising strategies developed thus far are antiangiogenic agents and Poly(ADP-ribose) polymerase (PARP) inhibitors...
2016: Journal of Translational Medicine
Shih-Hung Yang, Ting-Chun Kuo, Hsu Wu, Jhe-Cyuan Guo, Chiun Hsu, Chih-Hung Hsu, Yu-Wen Tien, Kun-Huei Yeh, Ann-Lii Cheng, Sung-Hsin Kuo
Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways...
August 28, 2016: World Journal of Gastroenterology: WJG
Ana Sofia Carvalho, Manuel S Rodríguez, Rune Matthiesen
Automatic analysis of increasingly growing literature repositories including data integration to other databases is a powerful tool to propose hypothesis that can be used to plan experiments to validate or disprove the hypothesis. Furthermore, it provides means to evaluate the redundancy of research line in comparison to the published literature. This is potentially beneficial for those developing research in a specific disease which are interested in exploring a particular pathway or set of genes/proteins...
2016: Methods in Molecular Biology
Rowan E Miller, Jonathan A Ledermann
Poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors have shown promising clinical activity in epithelial ovarian cancer. Following the observation in vitro that PARP inhibition is synthetically lethal in tumors with BRCA mutations, PARP inhibition has become the first genotype-directed therapy for BRCA1- and BRCA2-associated ovarian cancer. However, it is becoming clear that PARP inhibition also may have clinical utility in cancers associated with defects or aberrations in DNA repair that are unrelated to BRCA mutations...
August 2016: Clinical Advances in Hematology & Oncology: H&O
Margaret E Whicker, Z Ping Lin, Ruth Hanna, Alan C Sartorelli, Elena S Ratner
BACKGROUND: Platinum resistance is a major obstacle in the treatment of epithelial ovarian cancer (EOC). Activation of the AKT pathway promotes platinum resistance while inhibition of AKT sensitizes chemoresistant cells. Patients with BRCA mutant EOC, and thus a defect in the homologous recombination (HR) repair pathway, demonstrate greater clinical response to platinum and olaparib therapy than patients with BRCA wild-type EOC. MK-2206, an allosteric inhibitor of AKT phosphorylation, sensitizes a variety of cell types to various anticancer agents and is currently undergoing phase II trials as monotherapy for platinum-resistant ovarian, fallopian tube, and peritoneal cancer...
2016: BMC Cancer
Simay G Rocak, Aysun Bay Karabulut, Mehmet Tuzcu, Nurhan Şahin, Öztun Temelli, Volkan İnce, Kazim Şahin
BACKGROUND: At present, the rates of breast cancer are continuously increasing, with over a million new cases being diagnosed worldwide each year. Hence, the development of new breast cancer chemopreventive drugs with acceptable efficacy and toxicity that are suitable for use for a protracted period of time is urgently needed. The present study investigated the potential preventive effects of zoledronic acid [ZOL] and radiotherapy [RT], both alone and in combination, on precancerogenic changes on the breast tissues of females...
April 2016: Journal of Cancer Research and Therapeutics
Alexandra Leary, Aurelie Auguste, Soizick Mesnage
PURPOSE OF REVIEW: The proven activity of poly ADP ribose polymerase (PARP) inhibitors in BRCA-mutated homologous recombination deficient (HRD) ovarian cancer has led to the availability to patients with ovarian cancer of the first targeted therapy with an associated predictive biomarker. Our focus has recently turned towards expanding the clinical utility of PARP inhibitors beyond BRCA mutated ovarian cancer, and to a search for novel targets within DNA damage response (DDR). RECENT FINDINGS: Early trials in unselected patients with ovarian cancer showed responses to PARP inhibition in BRCA-wildtype ovarian cancer, and recent genomic studies have demonstrated that germline or somatic aberrations in other homologous recombination genes are present in a significant proportion of ovarian cancers...
September 2016: Current Opinion in Oncology
Florian Engert, Michal Kovac, Daniel Baumhoer, Michaela Nathrath, Simone Fulda
We recently discovered mutation signatures reminiscent of BRCA deficiency in the vast majority of a set of primary osteosarcomas (OS). In the current study, we therefore investigated the sensitivity of a panel of OS cell lines to the poly(ADP)-ribose polymerase (PARP) inhibitor talazoparib alone and in combination with several chemotherapeutic drugs (i.e. temozolomide (TMZ), SN-38, doxorubicin, cisplatin, methotrexate (MTX), etoposide/carboplatin). Here, we identified an association between homologous recombination (HR) repair deficiency and the response of OS cell lines to talazoparib...
July 20, 2016: Oncotarget
Arnab Ray Chaudhuri, Elsa Callen, Xia Ding, Ewa Gogola, Alexandra A Duarte, Ji-Eun Lee, Nancy Wong, Vanessa Lafarga, Jennifer A Calvo, Nicholas J Panzarino, Sam John, Amanda Day, Anna Vidal Crespo, Binghui Shen, Linda M Starnes, Julian R de Ruiter, Jeremy A Daniel, Panagiotis A Konstantinopoulos, David Cortez, Sharon B Cantor, Oscar Fernandez-Capetillo, Kai Ge, Jos Jonkers, Sven Rottenberg, Shyam K Sharan, André Nussenzweig
Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks...
July 21, 2016: Nature
Sarah R Hengel, Eva Malacaria, Laura Folly da Silva Constantino, Fletcher E Bain, Andrea Diaz, Brandon G Koch, Liping Yu, Meng Wu, Pietro Pichierri, M Ashley Spies, Maria Spies
The DNA repair protein RAD52 is an emerging therapeutic target of high importance for BRCA-deficient tumors. Depletion of RAD52 is synthetically lethal with defects in tumor suppressors BRCA1, BRCA2 and PALB2. RAD52 also participates in the recovery of the stalled replication forks. Anticipating that ssDNA binding activity underlies the RAD52 cellular functions, we carried out a high throughput screening campaign to identify compounds that disrupt the RAD52-ssDNA interaction. Lead compounds were confirmed as RAD52 inhibitors in biochemical assays...
2016: ELife
Shuhei Ito, Conleth G Murphy, Ekaterina Doubrovina, Maria Jasin, Mary Ellen Moynahan
Poly(ADP-ribose) polymerases (PARPs) are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR), a DNA double-strand break (DSB) repair pathway, are hypersensitive to PARP inhibitors (PARPi). Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer...
2016: PloS One
Dong Wang, Chengbo Li, Yuan Zhang, Min Wang, Nan Jiang, Lin Xiang, Ting Li, Thomas M Roberts, Jean J Zhao, Hailing Cheng, Pixu Liu
OBJECTIVE: Combined inhibition of PI3K and PARP has been shown to be effective in the treatment of preclinical models of breast cancer and prostate cancer independent of BRCA or PIK3CA mutational status. However, the knowledge about this combination treatment in ovarian cancer is limited. The aim of this study was to evaluate the therapeutic effect of PI3K inhibitor BKM120 and PARP inhibitor Olaparib on ovarian cancer cell lines bearing wild-type PIK3CA genes. METHODS: We exposed three wild-type PIK3CA ovarian cancer cell lines to a PI3K inhibitor BKM120 and/or a PARP inhibitor Olaparib...
September 2016: Gynecologic Oncology
Min Jeong Chun, Soo Kyung Hwang, Hyoun Geun Kim, Sung-Ho Goh, Sunshin Kim, Chang-Hun Lee
Previous studies have linked the DNA damage response to mitotic progression machinery. Mitotic kinases, such as Aurora A kinase and Polo-like kinase, are involved in the phosphorylation of cell cycle regulators in response to DNA damage. Here, we investigated the potential involvement of Aurora A kinase in the activation of the Fanconi anemia (FA)/BRCA pathway, which participates in cellular response to DNA interstrand cross-link lesions (ICL). Initially, we detected interactions between Aurora A kinase and FANCA protein, one of the components of the FA nuclear core complex...
July 2016: FEBS Open Bio
Karen Rabenau, Erin Hofstatter
PURPOSE: As a result of improved understanding of DNA repair mechanisms, poly(ADP-ribose) polymerase inhibitors (PARPi) are increasingly recognized to play an important therapeutic role in the treatment of cancer. The aim of this article is to provide a review of PARPi function in DNA damage repair and synthetic lethality and to demonstrate how these mechanisms can be exploited to provide new PARPi-based therapies to patients with solid tumors. METHODS: Literature from a range of sources, including PubMed and MEDLINE, were searched to identify recent reports regarding DNA damage repair and PARPi...
July 2016: Clinical Therapeutics
Philip C Schouten, Gwen M H E Dackus, Serena Marchetti, Harm van Tinteren, Gabe S Sonke, Jan H M Schellens, Sabine C Linn
BACKGROUND: Preclinical studies in breast cancer models showed that BRCA1 or BRCA2 deficient cell lines, when compared to BRCA proficient cell lines, are extremely sensitive to PARP1 inhibition. When combining the PARP1 inhibitor olaparib with cisplatin in a BRCA1-mutated breast cancer mouse model, the combination induced a larger response than either of the two compounds alone. Several clinical studies have investigated single agent therapy or combinations of both drugs, but no randomized clinical evidence exists for the superiority of carboplatin-olaparib versus standard of care therapy in patients with BRCA1- or BRCA2--mutated metastatic breast cancer...
2016: Trials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"