Read by QxMD icon Read


Yu Gu, Yang-Fu Wang, Qiang Li, Zu-Wu Liu
Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers' subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings...
October 20, 2016: Sensors
Li Jin, Renjie Huo, Runping Guo, Fei Li, Da-Wei Wang, Ye Tian, Qingyuan Hu, Xiaoyong Wei, Zhanbing He, Yan Yan, Gang Liu
Electrostrictive effect has some advantages over the piezoelectric effect, including temperature-stability and hysteresis-free character. In the present work, we report the diffuse phase transitions and electrostrictive properties in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-0.5BCT) ferroelectric ceramics. The doping concentration was set from 0.25 mole % to 2 mole % . It is found that by introducing Fe3+ ion into BZT-0.5BCT, the temperature corresponding to permittivity maximum Tm was shifted toward lower temperature monotonically by 37 oC per mole % Fe3+ ion...
October 24, 2016: ACS Applied Materials & Interfaces
Guangjie Zhang, Qingliang Liao, Zheng Zhang, Qijie Liang, Yingli Zhao, Xin Zheng, Yue Zhang
A piezoelectric paper based on BaTiO3 (BTO) nanoparticles and bacterial cellulose (BC) with excellent output properties for application of nanogenerators (NGs) is reported. A facile and scalable vacuum filtration method is used to fabricate the piezoelectric paper. The BTO/BC piezoelectric paper based NG shows outstanding output performance with open-circuit voltage of 14 V and short-circuit current density of 190 nA cm(-2). The maximum power density generated by this unique BTO/BC structure is more than ten times higher than BTO/polydimethylsiloxane structure...
February 2016: Advanced Science (Weinheim, Baden-Wurttemberg, Germany)
I Tzanakis, G S B Lebon, D G Eskin, K A Pericleous
A bespoke cavitometer that measures acoustic spectrum and is capable of operating in a range of temperatures (up to 750°C) was used to study the cavitation behaviour in three transparent liquids and in molten aluminium. To relate these acoustic measurements to cavitation development, the dynamics of the cavitation bubble structures was observed in three Newtonian, optically transparent liquids with significantly different physical properties: water, ethanol, and glycerine. Each liquid was treated at 20kHz with a piezoelectric ultrasonic transducer coupled to a titanium sonotrode with a tip diameter of 40mm...
January 2017: Ultrasonics Sonochemistry
Y Ke, X Y Zhang, S Ramakrishna, L M He, G Wu
Polyhydroxyalkanoates (PHAs) are a class of natural polyesters as carbon and energy reserves by >300 species of microorganisms. They are fully biodegradable, biocompatible and piezoelectric biopolymers that have attracted much attention recently as the biomaterial of choice for medical applications. However, the toughness, processability and hydrophilicity of PHAs need to tune to expand their applications as tissue engineering scaffolds or drug delivery systems. Reactive polymer blending is one of the most economic and versatile way to produce materials combining the desired properties via forming the compatibilizing agents in situ or inducing the chemico-physical interactions between polymer blends...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Isabel P G Fernandes, Ana Maria Oliveira-Brett
Calmodulin (CaM) is an essential protein present in all eukaryote cells, ranging from vertebrates to unicellular organisms. CaM is the most important Ca(2+) signalling protein, composed of two domains, N- and C-terminal domains, linked by a flexible central α-helix, and is responsible for the regulation of numerous calcium-mediated signalling pathways. Four calcium ions bind to CaM, changing its conformation and determining how it recognizes and regulates its cellular targets. The oxidation mechanism of native and denatured CaM, at a glassy carbon electrode, was investigated using differential pulse voltammetry and electrochemical impedance spectroscopy...
October 7, 2016: Bioelectrochemistry
K Bilmin, T Kujawska, W Secomski, A Nowicki, P Grieb
Sonodynamic therapy (SDT) is a promising technique based on the ability of certain substances, called sonosensitizers, to sensitize cancer cells to non-thermal effects of low-energy ultrasound waves, allowing their destruction. Sonosensitization is thought to induce cell death by direct physical effects such as cavitation and acoustical streaming as well as by complementary chemical reactions generating oxygen free radicals. One of the promising sonosensitizers is 5-aminolevulinic acid (ALA) which upon selective uptake by cancer cells is metabolized and accumulated as protoporphyrin IX...
2016: Folia Neuropathologica
Yunshun Zhang, Rencheng Zheng, Keisuke Shimono, Tsutomu Kaizuka, Kimihiko Nakano
The collection of clean power from ambient vibrations is considered a promising method for energy harvesting. For the case of wheel rotation, the present study investigates the effectiveness of a piezoelectric energy harvester, with the application of stochastic resonance to optimize the efficiency of energy harvesting. It is hypothesized that when the wheel rotates at variable speeds, the energy harvester is subjected to on-road noise as ambient excitations and a tangentially acting gravity force as a periodic modulation force, which can stimulate stochastic resonance...
October 17, 2016: Sensors
Saher M Maswadi, Bennett L Ibey, Caleb C Roth, Dmitri A Tsyboulski, Hope T Beier, Randolph D Glickman, Alexander A Oraevsky
Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth...
September 2016: Photoacoustics
Firas A Jamil, Sahar Shakir Al-Adili
Many treatment modalities have been introduced for correction of deficient alveolar ridge width. Bone expansion through the ridge split procedure is one of them. This technique was initiated in order to overcome many problems that usually associated with grafting procedures. The present study evaluated the effectiveness of piezoelectric device in performing ridge split using single-stage approach and assessed the outcomes during a period of about 4 months after surgery. A total of 23 patients ages in range between 18 and 60 years underwent ridge split procedure with immediate insertion of dental implants...
October 14, 2016: Journal of Craniofacial Surgery
Y Y Chen, R Zhu, M V Barnhart, G L Huang
Increasing sensitivity and signal to noise ratios of conventional wave sensors is an interesting topic in structural health monitoring, medical imaging, aerospace and nuclear instrumentation. Here, we report the concept of a gradient piezoelectric self-sensing system by integrating shunting circuitry into conventional sensors. By tuning circuit elements properly, both the quality and quantity of the flexural wave measurement data can be significantly increased for new adaptive sensing applications. Through analytical, numerical and experimental studies, we demonstrate that a metamaterial-based sensing system (MBSS) with gradient bending stiffness can be designed by connecting gradient negative capacitance circuits to an array of piezoelectric patches (sensors)...
October 17, 2016: Scientific Reports
Ryan Wagner, Jason P Killgore
We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation...
November 16, 2015: Applied Physics Letters
Honglong Ning, Ruiqiang Tao, Zhiqiang Fang, Wei Cai, Jianqiu Chen, Yicong Zhou, Zhennan Zhu, Zeke Zheng, Rihui Yao, Miao Xu, Lei Wang, Linfeng Lan, Junbiao Peng
The control of channel length is of great significance in the fabrication of thin film transistors (TFTs) with high-speed operation. However, achieving short channel on untreated glass by traditional piezoelectric inkjet printing is problematic due to the impacting and rebounding behaviors of droplet impinging on solid surface. Here a novel method was proposed to obtain short channel length on untreated glass by taking advantage of the difference in the retraction velocities on both sides of an ink droplet...
October 11, 2016: Journal of Colloid and Interface Science
Chunguang Piao, Jin Oh Kim
This paper considers the influence of the different thickness of the piezoelectric discs used in assembly of an ultrasonic sandwich transducer. The transducer consists of two piezoelectric discs with different thickness between 0 and 2.0mm and with same diameter 28mm. Its vibration characteristics of the radial and axial motions were investigated theoretically and experimentally in axisymmetric vibration modes. Theoretically, the differential equations of piezoelectric motions were solved to produce characteristic equations that provided natural frequencies and mode shapes...
September 28, 2016: Ultrasonics
Yu Chen, Xiaojing Mu, Tao Wang, Weiwei Ren, Ya Yang, Zhong Lin Wang, Chengliang Sun, Alex Yuandong Gu
Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both "stiff" and "flexible" materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to "stiff" materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity...
October 14, 2016: Scientific Reports
Tikhon Vergentev, Iurii Bronwald, Dmitry Chernyshov, Semen Gorfman, Stephanie H M Ryding, Paul Thompson, Robert J Cernik
Synchrotron X-rays on the Swiss Norwegian Beamline and BM28 (XMaS) at the ESRF have been used to record the diffraction response of the PMN-PT relaxor piezoelectric 67% Pb(Mg1/3Nb2/3)O3-33% PbTiO3 as a function of externally applied electric field. A DC field in the range 0-18 kV cm(-1) was applied along the [001] pseudo-cubic direction using a specially designed sample cell for in situ single-crystal diffraction experiments. The cell allowed data to be collected on a Pilatus 2M area detector in a large volume of reciprocal space using transmission geometry...
October 1, 2016: Journal of Applied Crystallography
Magdalena Owczarek, Karl A Hujsak, Daniel P Ferris, Aleksandrs Prokofjevs, Irena Majerz, Przemysław Szklarz, Huacheng Zhang, Amy A Sarjeant, Charlotte L Stern, Ryszard Jakubas, Seungbum Hong, Vinayak P Dravid, J Fraser Stoddart
Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity-the properties that originate from their non-centrosymmetric crystal lattice-but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules...
October 13, 2016: Nature Communications
Tsontcho Ianchulev, Arturo Chayet, Malik Kahook, Mark Packer, Louis Pasquale, Robert N Weinreb
AIM: Eyedroppers deliver medication volumes exceeding conjunctival absorptive capacity, causing spillage and risking ocular/systemic complications. We evaluated piezoelectric microdosing. Results/methodology: Subjects (n = 102) received precision microdroplet delivery of phenylephrine (2.5%) and tropicamide (1.0%): 1 × 1.5 μl, 1 × 6 μl or 2 × 3 μl of each (randomized 1:1:1), into one eye. Contralateral eyes received eyedropper doses of both drugs. Outcomes were pupil dilation (0-60 min) and patient satisfaction...
October 13, 2016: Therapeutic Delivery
Yongke Yan, Jie E Zhou, Deepam Maurya, Yu U Wang, Shashank Priya
A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10(-3) Vm N(-1)) in comparison with other known single-phase oxide materials...
October 11, 2016: Nature Communications
Changyeon Baek, Jong Hyuk Yun, Ji Eun Wang, Chang Kyu Jeong, Keon Jae Lee, Kwi-Il Park, Do Kyung Kim
Lead-free piezoelectric 0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 (BCTZ) nanoparticles (NPs) composed of earth-abundant elements were adopted for use in a flexible composite-based piezoelectric energy harvester (PEH) that can convert mechanical deformation into electrical energy. The solid-state synthesized BCTZ NPs and silver nanowires (Ag NWs) chosen to reduce the toxicity of the filler materials were blended with a polydimethylsiloxane (PDMS) matrix to produce a piezoelectric nanocomposite (p-NC). The naturally flexible polymer-based p-NC layers were sandwiched between two conductive polyethylene terephthalate plastic substrates to achieve a flexible energy harvester...
October 14, 2016: Nanoscale
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"