Read by QxMD icon Read

Flower structure, genetic regulation

Tingting Sun, Mingjun Li, Yun Shao, Lingyan Yu, Fengwang Ma
Elemental phosphorus (Pi) is essential to plant growth and development. The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. Members include five sub-cellular phosphate transporters that play different roles in Pi uptake and transport. We searched the Genome Database for Rosaceae and identified five clusters of phosphate transporters in apple (Malus domestica), including 37 putative genes. The MdPHT1 family contains 14 genes while MdPHT2 has two, MdPHT3 has seven, MdPHT4 has 11, and MdPHT5 has three...
2017: Frontiers in Plant Science
Ursula Abad, Massimiliano Sassi, Jan Traas
The shoot apical meristem (SAM) is a small population of stem cells that continuously generates organs and tissues. We will discuss here flower formation at the SAM, which involves a complex network of regulatory genes and signalling molecules. A major downstream target of this network is the extracellular matrix or cell wall, which is a local determinant for both growth rates and growth directions. We will discuss here a number of recent studies aimed at analysing the link between cell wall structure and molecular regulation...
May 19, 2017: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
Isabel Bartrina, Helen Jensen, Ondřej Novák, Miroslav Strnad, Tomáš Werner, Thomas Schmülling
The phytohormone cytokinin is a regulator of numerous processes in plants. In Arabidopsis (Arabidopsis thaliana), the cytokinin signal is perceived by three membrane-located receptors named ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and AHK4/CRE1. How the signal is transmitted across the membrane is an entirely unknown process. The three receptors have been shown to operate mostly in a redundant fashion, and very few specific roles have been attributed to single receptors. Using a forward genetic approach, we isolated constitutively active gain-of-function variants of the AHK2 and AHK3 genes, named repressor of cytokinin deficiency2 (rock2) and rock3, respectively...
March 2017: Plant Physiology
Mingyong Tang, Yan-Bin Tao, Qiantang Fu, Yaling Song, Longjian Niu, Zeng-Fu Xu
Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds...
November 21, 2016: Scientific Reports
Zachary H Lemmon, Soon Ju Park, Ke Jiang, Joyce Van Eck, Michael C Schatz, Zachary B Lippman
One of the most remarkable manifestations of plant evolution is the diversity for floral branching systems. These "inflorescences" arise from stem cell populations in shoot meristems that mature gradually to reproductive states in response to environmental and endogenous signals. The morphology of the shoot meristem maturation process is conserved across distantly related plants, raising the question of how diverse inflorescence architectures arise from seemingly common maturation programs. In tomato and related nightshades (Solanaceae), inflorescences range from solitary flowers to highly branched structures bearing hundreds of flowers...
December 2016: Genome Research
Aleksandra Smoczynska, Zofia Szweykowska-Kulinska
Flower structure in grasses is very unique. There are no petals or sepals like in eudicots but instead flowers develop bract-like structures - palea and lemma. Reproductive organs are enclosed by round lodicule that not only protects reproductive organs but also plays an important role during flower opening. The first genetic model for floral organ development was proposed 25 years ago and it was based on the research on model eudicots. Since then, studies have been carried out to answer the question whether this model could be applicable in the case of monocots...
2016: Acta Biochimica Polonica
Marimuthu Kumaravel, Subbaraya Uma, Suthanthiram Backiyarani, Marimuthu Somasundaram Saraswathi, Muthu Mayil Vaganan, Muthusamy Muthusamy, Kallu Purayil Sajith
Endogenous hormone secretion proteins along with stress and defense proteins play predominant role in banana embryogenesis. This study reveals the underlying molecular mechanism during transition from vegetative to embryogenic state. Banana (Musa spp.) is well known globally as a food fruit crop for millions. The requirement of quality planting material of banana is enormous. Although mass multiplication through tissue culture is in vogue, high-throughput techniques like somatic embryogenesis (SE) as a mass multiplication tool needs to be improved...
January 2017: Plant Cell Reports
Fan Yang, Peter Hsu, Susan D Lee, Wen Yang, Derick Hoskinson, Weihao Xu, Claire Moore, Gabriele Varani
3'-End processing of pre-mRNAs prior to packaging and export to the cytoplasm of the mature transcript is a highly regulated process executed by several tens of protein factors that recognize poorly conserved RNA signals. Among them is Pcf11, a highly conserved, multidomain protein that links transcriptional elongation, 3'-end processing, and transcription termination. Here we report the structure and biochemical function of Pcf11's C-terminal domain, which is conserved from yeast to humans. We identify a novel zinc-finger fold, resembling a trillium flower...
January 2017: RNA
Shan-Shan Sun, Paul F Gugger, Qing-Feng Wang, Jin-Ming Chen
The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers...
2016: PeerJ
Jyotirmaya Mathan, Juhi Bhattacharya, Aashish Ranjan
A number of plant features and traits, such as overall plant architecture, leaf structure and morphological features, vascular architecture and flowering time are important determinants of photosynthetic efficiency and hence the overall performance of crop plants. The optimization of such developmental traits thus has great potential to increase biomass and crop yield. Here, we provide a comprehensive review of these developmental traits in crop plants, summarizing their genetic regulation and highlighting the potential of manipulating these traits for crop improvement...
September 15, 2016: Development
Alice Trivellini, Giacomo Cocetta, Donald A Hunter, Paolo Vernieri, Antonio Ferrante
Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance...
September 3, 2016: Journal of Experimental Botany
Wenjun Huang, A B M Khaldun, Jianjun Chen, Chanjuan Zhang, Haiyan Lv, Ling Yuan, Ying Wang
Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants...
2016: Frontiers in Plant Science
Philippe Gallusci, Charlie Hodgman, Emeline Teyssier, Graham B Seymour
Fruit ripening is a developmental process that results in the leaf-like carpel organ of the flower becoming a mature ovary primed for dispersal of the seeds. Ripening in fleshy fruits involves a profound metabolic phase change that is under strict hormonal and genetic control. This work reviews recent developments in our understanding of the epigenetic regulation of fruit ripening. We start by describing the current state of the art about processes involved in histone post-translational modifications and the remodeling of chromatin structure and their impact on fruit development and ripening...
2016: Frontiers in Plant Science
Taeko Shibaya, Kiyosumi Hori, Eri Ogiso-Tanaka, Utako Yamanouchi, Koka Shu, Noriyuki Kitazawa, Ayahiko Shomura, Tsuyu Ando, Kaworu Ebana, Jianzhong Wu, Toshimasa Yamazaki, Masahiro Yano
Flowering time is one of the most important agronomic traits in rice (Oryza sativa L.), because it defines harvest seasons and cultivation areas, and affects yields. We used a map-based strategy to clone Heading date 18 (Hd18). The difference in flowering time between the Japanese rice cultivars Koshihikari and Hayamasari was due to a single nucleotide polymorphism within the Hd18 gene, which encodes an amine oxidase domain-containing protein and is homologous to Arabidopsis FLOWERING LOCUS D (FLD). The Hayamasari Hd18 allele and knockdown of Hd18 gene expression delayed the flowering time of rice plants regardless of the day-length condition...
September 2016: Plant & Cell Physiology
Sandra Poyatos-Pertíñez, Muriel Quinet, Ana Ortíz-Atienza, Sandra Bretones, Fernando J Yuste-Lisbona, Rafael Lozano
Genetic interactions of UFD gene support its specific function during reproductive development of tomato; in this process, UFD could play a pivotal role between inflorescence architecture and flower initiation genes. Tomato (Solanum lycopersicum L.) is a major vegetable crop that also constitutes a model species for the study of plant developmental processes. To gain insight into the control of flowering and floral development, a novel tomato mutant, unfinished flower development (ufd), whose inflorescence and flowers were unable to complete their normal development was characterized using double mutant and gene expression analyses...
September 2016: Plant Reproduction
Dhananjay K Pandey, Bhupendra Chaudhary
BACKGROUND: Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. RESULTS: Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants...
2016: BMC Plant Biology
Anne L Robertson, Nikolay V Ogryzko, Katherine M Henry, Catherine A Loynes, Matthew J Foulkes, Marco M Meloni, Xingang Wang, Christopher Ford, Malcolm Jackson, Philip W Ingham, Heather L Wilson, Stuart N Farrow, Roberto Solari, Roderick J Flower, Simon Jones, Moira K B Whyte, Stephen A Renshaw
Neutrophils are essential for host defence and are recruited to sites of inflammation in response to tissue injury or infection. For inflammation to resolve, these cells must be cleared efficiently and in a controlled manner, either by apoptosis or reverse migration. If the inflammatory response is not well-regulated, persistent neutrophils can cause damage to host tissues and contribute to the pathogenesis of chronic inflammatory diseases, which respond poorly to current treatments. It is therefore important to develop drug discovery strategies that can identify new therapeutics specifically targeting neutrophils, either by promoting their clearance or by preventing their recruitment...
June 1, 2016: Disease Models & Mechanisms
Fiammetta Alagna, Marco Cirilli, Giulio Galla, Fabrizio Carbone, Loretta Daddiego, Paolo Facella, Loredana Lopez, Chiara Colao, Roberto Mariotti, Nicolò Cultrera, Martina Rossi, Gianni Barcaccia, Luciana Baldoni, Rosario Muleo, Gaetano Perrotta
The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction...
2016: PloS One
Jie Qu, Shin Gene Kang, Cyrus Hah, Jyan-Chyun Jang
GA and ABA play antagonistic roles in numerous cellular processes essential for growth, development, and stress responses. GASA4 and GASA6 belong to a family of GA-Stimulated transcripts in Arabidopsis, known as GA-inducible and ABA-repressible. We have found that GASA4 and GASA6 expression is likely mediated through a repressor of GA responses, GA INSENSITIVE (GAI) protein. Moreover, GASA4 and GASA6 are in general up regulated by growth hormones (auxin, BR, cytokinin, and GA) and down regulated by stress hormones (ABA, JA, and SA), indicating a role of GASA4 and GASA6 in hormone crosstalk...
May 2016: Plant Science: An International Journal of Experimental Plant Biology
Inés Casimiro-Soriguer, Eduardo Narbona, M L Buide, José C Del Valle, Justen B Whittall
Flower color polymorphisms are widely used as model traits from genetics to ecology, yet determining the biochemical and molecular basis can be challenging. Anthocyanin-based flower color variations can be caused by at least 12 structural and three regulatory genes in the anthocyanin biosynthetic pathway (ABP). We use mRNA-Seq to simultaneously sequence and estimate expression of these candidate genes in nine samples of Silene littorea representing three color morphs (dark pink, light pink and white) across three developmental stages in hopes of identifying the cause of flower color variation...
2016: Frontiers in Plant Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"