Read by QxMD icon Read

Silicon detector

Marit Ulset Nordsveen, Chi Kwong Tang, Jarle Gran
We demonstrate the use of a dual-mode detector for determining the internal quantum deficiency of a silicon photodiode without the use of an external reference. This is achieved by combining two different principles for measuring optical power in one device, where the photodiode is used as absorber for both thermal and photon detection. Thermal detection is obtained by the same principle as for an electrical substitution radiometer (ESR), with a type A measurement uncertainty of 0.34 % in unstabilized room temperature...
April 17, 2017: Optics Express
Naema Othman, Pierre Berini
We propose and investigate a Schottky contact detector where the contact metal is a nanoscale metal stripe waveguide supporting surface plasmons with strong localization along the Schottky contact. We consider Au for the metal stripe, p-doped silicon for the semiconductor, operation in the infrared (at λ<sub>0</sub>=1550  nm), and internal photoemission as the sub-bandgap detection mechanism. We find that the main surface plasmon mode of operation of the Au stripe exhibits diverging real and imaginary parts of n<sub>eff</sub> with decreasing stripe dimensions, commensurate with increasing confinement...
April 20, 2017: Applied Optics
Nicolas Brodusch, Raynald Gauvin
Electron channelling is known to affect the x-ray production when an accelerated electron beam is applied to a crystalline material and is highly dependent on the local crystal orientation. This effect, unless very long counting time are used, is barely noticeable on x-ray energy spectra recorded with conventional silicon drift detectors (SDD) located at a small elevation angle. However, the very high count rates provided by the new commercially available annular SDDs permit now to observe this effect routinely and may, in some circumstances, hide the true elemental x-ray variations due to the local true specimen composition...
April 18, 2017: Journal of Microscopy
Min Sun Lee, Kyeong Yun Kim, Guen Bae Ko, Jae Sung Lee
In this study, we developed a proof-of-concept prototype PET system using a pair of depth-of-interaction (DOI) PET detectors based on the proposed DOI-encoding method and digital silicon photomultiplier (dSiPM). Our novel cost-effective DOI measurement method is based on a triangular-shaped reflector that requires only a single-layer pixelated crystal and single-ended signal readout. The DOI detector consisted of an 18  ×  18 array of unpolished LYSO crystal (1.47  ×  1.47  ×  15 mm(3)) wrapped with triangular-shaped reflectors...
April 13, 2017: Physics in Medicine and Biology
Joshua W Cates, Matthew F Bieniosek, Craig S Levin
Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators...
January 2017: Journal of Medical Imaging
Satadal Dutta, Vishal Agarwal, Raymond J E Hueting, Jurriaan Schmitz, Anne-Johan Annema
This work presents a monolithic laterally-coupled wide-spectrum (350 nm < λ < 1270 nm) optical link in a silicon-on-insulator CMOS technology. The link consists of a silicon (Si) light-emitting diode (LED) as the optical source and a Si photodiode (PD) as the detector; both realized by vertical abrupt n<sup>+</sup>p junctions, separated by a shallow trench isolation composed of silicon dioxide. Medium trench isolation around the devices along with the buried oxide layer provides galvanic isolation...
March 6, 2017: Optics Express
Y Nakano, Y Enomoto, T Masunaga, S Menk, P Bertier, T Azuma
A new electrostatic ion storage ring, the RIKEN cryogenic electrostatic ring, has been commissioned with a 15-keV ion beam under cryogenic conditions. The ring was designed with a closed ion beam orbit of about 2.9 m, where the ion beam is guided entirely by electrostatic components. The vacuum chamber of the ring is cooled using a liquid-He-free cooling system to 4.2 K with a temperature difference of 0.4 K at most within all the positions measured by calibrated silicon diode sensors. The first cryogenic operation with a 15-keV Ne(+) beam was successfully performed in August 2014...
March 2017: Review of Scientific Instruments
Jiawen Lu, Xuexi Sheng, Guoqing Tong, Zhongwei Yu, Xiaolin Sun, Linwei Yu, Xiangxin Xu, Junzhuan Wang, Jun Xu, Yi Shi, Kunji Chen
Inorganic CsPbX3 (X = Cl, Br, I, or hybrid among them) perovskite quantum dots (IPQDs) are promising building blocks for exploring high performance optoelectronic applications. In this work, the authors report a new hybrid structure that marries CsPbX3 IPQDs to silicon nanowires (SiNWs) radial junction structures to achieve ultrafast and highly sensitive ultraviolet (UV) detection in solar-blind spectrum. A compact and uniform deployment of CsPbX3 IPQDs upon the sidewall of low-reflective 3D radial junctions enables a strong light field excitation and efficient down-conversion of the ultraviolet incidences, which are directly tailored into emission bands optimized for a rapid photodetection in surrounding ultrathin radial p-i-n junctions...
March 29, 2017: Advanced Materials
Haewook Park, Guen Bae Ko, Jae Sung Lee
Silicon photomultiplier (SiPM) is widely utilized in various positron emission tomography (PET) detectors and systems. However, the individual recording of SiPM output signals is still challenging owing to the high granularity of the SiPM; thus, charge division multiplexing is commonly used in PET detectors. Resistive charge division method is well established for reducing the number of output channels in conventional multi-channel photosensors, but it degrades the timing performance of SiPM-based PET detectors by yielding a large resistor-capacitor (RC) constant...
April 3, 2017: Physics in Medicine and Biology
Stefan E Brunner, Dennis Schaart
Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce...
March 30, 2017: Physics in Medicine and Biology
T Frigge, B Hafke, T Witte, B Krenzer, C Streubühr, A Samad Syed, V Mikšić Trontl, I Avigo, P Zhou, M Ligges, D von der Linde, U Bovensiepen, M Horn-von Hoegen, S Wippermann, A Lücke, S Sanna, U Gerstmann, W G Schmidt
Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds...
April 13, 2017: Nature
Chun-Hui Gong, Xiao-Bin Tang, Di-Yun Shu, Hai-Yan Yu, Chang-Ran Geng
Optimization of the Compton camera for measuring prompt gamma rays (0.478MeV) emitted during boron neutron capture therapy (BNCT) was performed with Geant4. The parameters of the Compton camera were determined as follows: 3cm thick - 10cm wide scatter detector (Silicon), 10cm thick - 10cm wide absorber detector (Germanium), and 1cm distance between the scatter and absorber detectors. For a typical brain tumor treatment, the overall detection efficiency of the optimized Compton camera was approximately 0.1425% using the Snyder's head phantom with a sphere tumor (4cm diameter and ~1cm depth)...
March 19, 2017: Applied Radiation and Isotopes
Chunsheng Wu, Liping Du, Yulan Tian, Xi Zhang, Ping Wang
A light-addressable potentiometric sensor (LAPS), a silicon-based surface potential detector, is combined with bioengineered olfactory sensory neurons (OSN) for odorant detection. A LAPS chip is used as a transducer to monitor cell membrane potential changes. In addition, a focused movable laser with a diameter comparable to cell sizes is employed to select the desirable single cell for measurement under a microscope. Bioengineered OSNs are coupled to the LAPS surface and employed as sensing elements, which are prepared by the expression of an olfactory receptor of C...
2017: Methods in Molecular Biology
Fei Xia, David Sinefeld, Bo Li, Chris Xu
We introduce a simple wavefront sensing scheme for aberration measurement of pulsed laser beams in near-infrared wavelengths (<2200  nm), where detectors are not always available or are very expensive. The method is based on two-photon absorption in a silicon detector array for longer wavelengths detection. We demonstrate the simplicity of such implementations with a commercially available Shack-Hartmann wavefront sensor and discuss the detection sensitivity of this method.
March 15, 2017: Optics Letters
Jacob T Held, Samuel Duncan, K Andre Mkhoyan
Quantitative ADF-STEM imaging paired with image simulations has proven to be a powerful technique for determining the three dimensional location of substitutionally doped atoms in thin films. Expansion of this technique to lightly-doped nanocrystals requires an understanding of the influence of specimen mistilt on dopant visibility due to the difficulty of accurate orientation determination in such systems as well as crystal movement under the beam. In this study, the effects of specimen mistilt on ADF-STEM imaging are evaluated using germanium-doped silicon nanocrystals as model systems...
March 7, 2017: Ultramicroscopy
Michael Mengason, Nicholas Ritchie
The evolution of the energy dispersive spectrometer (EDS) from the lithium-drifted silicon detector [Si(Li)] to the silicon drift detector (SDD) has created new opportunities in the field of electron probe X-ray microanalysis. The SDD permits operation at significantly higher count rates than the Si(Li) and also provides a more stable energy scale. X-ray spectra captured by EDS can now be analyzed qualitatively or quantitatively under the same beam conditions as used for wavelength dispersive spectrometry (WDS)...
March 10, 2017: Microscopy and Microanalysis
Mehran Yarahmadi, Sonja Wegener, Otto A Sauer
PURPOSE: To investigate the energy dependence/spectral sensitivity of silicon diodes designed for small-field dosimetry and obtain response factors (RFs) for arbitrary photon spectra using Monte Carlo (MC) simulations. METHODS: The EGSnrc user-code DOSRZnrc was used to calculate the dose deposition in water and in the active volume of a stereotactic diode field detector (SFD). Then the RFs of the SFD were calculated for several circular field sizes and energies at 5 cm depth in water...
March 8, 2017: Medical Physics
Hyeok-Jun Choe, Yong Choi, Wei Hu, Jianhua Yan, Jin Ho Jung
There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET...
April 7, 2017: Physics in Medicine and Biology
M C Ovejero, A Pérez Vega-Leal, M I Gallardo, J M Espino, A Selva, M A Cortés-Giraldo, R Arráns
The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.
February 2017: Review of Scientific Instruments
Jong-Bum You, Hyeokbin Kwon, Jonghoon Kim, Hyo-Hoon Park, Kyoungsik Yu
We demonstrate silicon ridge waveguide photo-detectors capable of sub-bandgap light absorption and avalanche multiplication. The proposed waveguide photo-detectors contain highly doped PN junction, where a strong electric field can generate the photon-assisted tunneling current for sub-bandgap light incidence and amplify the generated photo-current by the avalanche multiplication effect. The voltage-dependent sub-bandgap absorption coefficient and multiplication gain are experimentally evaluated for various doping configurations to find optimal photo-response with low dark currents...
February 20, 2017: Optics Express
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"