Read by QxMD icon Read

Cell -free DNA

Pei-Hui Wang, Sin-Yee Fung, Wei-Wei Gao, Jian-Jun Deng, Yun Cheng, Vidyanath Chaudhary, Kit-San Yuen, Ting-Hin Ho, Ching-Ping Chan, Yan Zhang, Kin-Hang Kok, Wanling Yang, Chi-Ping Chan, Dong-Yan Jin
STING is a core adaptor in innate nucleic acid sensing in mammalian cells, on which different sensing pathways converge to induce type I interferon (IFN) production. Particularly, STING is activated by 2'3'-cGAMP, a cyclic dinucleotide containing mixed phosphodiester linkages and produced by cytoplasmic DNA sensor cGAS. Here, we reported on a novel transcript isoform of STING designated STING-β that dominantly inhibits innate nucleic acid sensing. STING-β without transmembrane domains was widely expressed at low levels in various human tissues and viral induction of STING-β correlated inversely with IFN-β production...
March 14, 2018: Nucleic Acids Research
Mousumi Pal, Utpal Nandi, Debaraj Mukherjee
Ruthenium (Ru) complexes are known for their promising anticancer activity presumably due to octahedral coordination geometry, slow ligand exchange rate, the range of different oxidation states and target specificity. This review article summarizes the physicochemical processes which are responsible for the selectivity of Ru complexes toward cancer cells over the normal cells. Emphasis has been given on the activation mechanism of Ru(III) complex administered as a prodrug and then the release of active species in an acidic environment of cancer cell through normal or photo induced hydrolysis or ligand oxidation...
March 7, 2018: European Journal of Medicinal Chemistry
Asmaa E Kassab, Ehab M Gedawy
As we are interested in synthetizing biologically active leads with dual anticancer and antibacterial activity, we adopted biology oriented drug synthesis (BIODS) strategy to synthesize a series of novel ciprofloxacin (CP) hybrids. The National Cancer Institute (USA) selected seventeen newly synthesized compounds for anticancer evaluation against 59 different human tumor cell lines. Five compounds 3e, 3f, 3h, 3o and 3p were further studied through determination of IC50 values against the most sensitive cancer cell lines...
March 9, 2018: European Journal of Medicinal Chemistry
Balal Brazvan, Abbas Ebrahimi-Kalan, Kobra Velaei, Ahmad Mehdipour, Zeynab Aliyari Serej, Ayyub Ebrahimi, Mohammad Ghorbani, Omid Cheraghi, Hojjatollah Nozad Charoudeh
The end of linear chromosomes is formed of a special nucleoprotein heterochromatin structure with repetitive TTAGGG sequences called telomere. Telomere length is regulated by a special enzyme called telomerase, a specific DNA polymerase that adds new telomeric sequences to the chromosome ends. Telomerase consists of two parts; the central protein part and the accessory part which is a RNA component transported by the central part. Regulation of telomere length by this enzyme is a multi-stage process. Telomere length elongation is strongly influenced by the level of telomerase and has a strong correlation with the activity of telomerase enzyme...
March 13, 2018: Biomedicine & Pharmacotherapy, Biomédecine & Pharmacothérapie
Dong-Keon Lee, Ji-Hee Kim, Joohwan Kim, Seunghwan Choi, MinSik Park, Wonjin Park, Suji Kim, Kyu-Sun Lee, Taesam Kim, Jiwon Jung, Yoon Kyung Choi, Kwon-Soo Ha, Moo-Ho Won, Timothy R Billiar, Young-Guen Kwon, Young-Myeong Kim
Regulated in development and DNA damage responses (REDD)-1, an inhibitor of mammalian target of rapamycin (mTOR), is induced by various cell stressors, including LPS, a major player in the pathogenesis of endotoxemic shock. However, the pathologic role of REDD-1 in endotoxemia is largely unknown. We found that LPS increased REDD-1 expression, nuclear transcription factor-κB (NF-κB) activation, and inflammation and that these responses were suppressed by REDD-1 knockdown and in REDD-1+/- macrophages. REDD-1 overexpression stimulated NF-κB-dependent inflammation without additional LPS stimulation...
March 16, 2018: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Hirofumi Chiba, Yoichi Kakuta, Yoshitaka Kinouchi, Yosuke Kawai, Kazuhiro Watanabe, Munenori Nagao, Takeo Naito, Motoyuki Onodera, Rintaro Moroi, Masatake Kuroha, Yoshitake Kanazawa, Tomoya Kimura, Hisashi Shiga, Katsuya Endo, Kenichi Negoro, Masao Nagasaki, Michiaki Unno, Tooru Shimosegawa
BACKGROUND: Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs...
2018: PloS One
Renata Gruszka, Magdalena Zakrzewska
The fundamental function of ribonucleic acids is to transfer genetic information from DNA to protein during translation process, however, this is not the only way connecting active RNA sequences with essential biological processes. Up until now, many RNA subclasses of different size, structure, and biological function were identified. Among them, there are non-coding single-stranded microRNAs (miRNAs). This subclass comprises RNAs of 19-25 nucleotides in length that modulate the activity of well-defined coding RNAs and play a crucial role in many physiological and pathological processes...
March 16, 2018: International Journal of Molecular Sciences
Yutaka Ikeda, Yukio Nagasaki
Oxidative stress caused by reactive oxygen species (ROS) occurs as events in which living tissues contact certain materials. These events include cell cultures and implantation of materials. Because of the high reactivity of ROS, they damage cells by oxidizing DNA, lipids, and proteins. Conversely, ROS also act as signaling molecules regulating cellular morphology. In particular, mitochondrial ROS are involved in the regulation of cellular physiology, including differentiation, autophagy, metabolic adaptation, apoptosis, and immunity...
March 16, 2018: Biomedical Materials
Koh-Hei Yamada, Ryuichi Majima, Toyofumi Yamaguchi, Naoki Inoue
Background Previously, we established a reporter cell line for human cytomegalovirus and screened anti-human cytomegalovirus compounds using the cell line. In this study, we characterized one of the identified compounds, 2,4-diamino-6-(4-methoxyphenyl)pyrimidine (coded as 35C10). Methods 50% Effective concentrations (EC50s) and 50% cytotoxic concentrations (CC50s) of 35C10 and its derivatives in human fibroblasts were determined by X-gal staining of the cells infected with human cytomegalovirus Towne strain expressing β-galactosidase...
January 2018: Antiviral Chemistry & Chemotherapy
Corey Heffernan, Patrice Maurel
Lentiviral transduction is a gene delivery method that provides numerous advantages over direct transfection and traditional retroviral or adenoviral delivery methods. It facilitates for the transduction of primary cells inherently difficult to transfect, delivers constructs of interest to nondividing as well as dividing cells, and permits the long-term expression of sizable DNA inserts (e.g., <7 kb). The study of peripheral nerve myelination at the molecular level has long benefited from the Schwann cells/dorsal root ganglia (DRG) neurons myelinating co-culture system...
2018: Methods in Molecular Biology
Meiguang Xiong, Suyun Wang, Yan-Yi Wang, Yong Ran
The cGAS-MITA pathway of cytosolic DNA sensing plays essential roles in immune response against pathogens that contain DNA or with DNA production in their life cycles. The cGAS-MITA pathway also detects leaked or aberrant accumulated self DNA in the cytoplasm under certain pathological conditions, such as virus induced cell death, DNA damage, mitochondria damage, gene mutations, which results in autoimmune diseases. Therefore, the cGAS-MITA pathway must be tightly controlled to ensure proper immune response against pathogens and to avoid autoimmune diseases...
March 15, 2018: Virologica Sinica
Lisa Menegazzo, Valentina Scattolini, Roberta Cappellari, Benedetta Maria Bonora, Mattia Albiero, Mario Bortolozzi, Filippo Romanato, Giulio Ceolotto, Saula Vigili de Kreutzeberg, Angelo Avogaro, Gian Paolo Fadini
AIMS: Diabetes is associated with an excess release of neutrophil extracellular traps (NETs) and an enhanced NETosis, a neutrophil cell death programme instrumental to anti-microbial defences, but also involved in tissue damage. We herein investigated whether the antidiabetic drug metformin protects against NETosis. METHODS: We measured NET components in the plasma of patients with pre-diabetes who were randomized to receive metformin or placebo for 2 months. To control for the effect on glucose, we also measured NET components in the plasma of patients with type 2 diabetes before and after treatment with insulin or dapagliflozin...
March 15, 2018: Acta Diabetologica
Beibei Zhang, Qiao Wang, Xinhui Xu, Qiang Xia, Feifei Long, Weiwei Li, Yingchun Shui, Xinyi Xia, Jinke Wang
This study develops a new method for detecting target DNA based on Cas9 nuclease, which was named as CARP, representing CRISPR- or Cas9/sgRNAs-associated reverse PCR. This technique detects target DNA in three steps: (1) cleaving the detected DNA sample with Cas9 in complex with a pair of sgRNAs specific to target DNA; (2) ligating the cleaved DNA with DNA ligase; (3) amplifying target DNA with PCR. In the ligation step, the Cas9-cut target DNA was ligated into intramolecular circular or intermolecular concatenated linear DNA...
March 15, 2018: Analytical and Bioanalytical Chemistry
Yuki Yoshimura, Miyuki Ida-Tanaka, Tsuyoshi Hiramaki, Motohito Goto, Tsutomu Kamisako, Tomoo Eto, Mika Yagoto, Kenji Kawai, Takeshi Takahashi, Manabu Nakayama, Mamoru Ito
DNA site-specific recombination by Cre/loxP is a powerful tool for gene manipulation in experimental animals. VCre/VloxP and SCre/SloxP are novel site-specific recombination systems, consisting of a recombinase and its specific recognition sequences, which function in a manner similar to Cre/loxP. Previous reports using Escherichia coli and Oryzias latipes demonstrated the existence of stringent specificity between each recombinase and its target sites; VCre/VloxP, SCre/SloxP, and Cre/loxP have no cross-reactivity with each other...
March 15, 2018: Transgenic Research
Te-Sha Tsai, Sonika Tyagi, Justin C St John
STUDY QUESTION: What are the molecular differences between mitochondrial DNA (mtDNA)-deficient and mtDNA-normal oocytes and how does mitochondrial supplementation alter these? SUMMARY ANSWER: Changes to DNA methylation in a 5' cytosine-phosphate-guanine 3' (CpG) island in the mtDNA-specific replication factor (DNA polymerase gamma (POLG)) of mtDNA-deficient oocytes mediates an increase in mtDNA copy number by the 2-cell stage that positively modulates the expression of nuclear genes, which affect cellular and metabolic processes, following autologous mitochondrial supplementation...
March 13, 2018: Human Reproduction
Suhong Xiao, Ying-Sheng Tang, Praveen Kusumanchi, Sally P Stabler, Ying Zhang, Asok C Antony
Background: Epidemiologic and in vitro studies suggest independent linkages between poor folate and/or vitamin B-12 nutrition, genomic human papillomavirus (HPV) type 16 viral integration, and cancer. However, there is no direct evidence in vivo to support the causative role of poor folate nutrition in HPV16 integration into the cellular genome. Objective: We tested the hypothesis that folate deficiency enables the integration of HPV16 into the genome of HPV16-harboring keratinocytes, and could thereby influence earlier transformation of these cells to cancer in an animal model...
March 1, 2018: Journal of Nutrition
Jordi Grau, Cristina Renau, Ana B Caballero, Amparo Caubet, Marta Pockaj, Julia Lorenzo, Patrick Gamez
The [Cu(L)Cl2]2 and [Pt(L)Cl2] complexes were prepared from the simple Schiff-base ligand (E)-phenyl-N-((pyridin-2-yl)methylene)methanamine (L) and respectively, CuCl2 and cis-[PtCl2(DMSO)2]. DNA-interaction studies revealed that the copper complex most likely acts as a DNA cleaver whereas the platinum complex binds to the double helix. Remarkably, cell-viability experiments with HeLa, MCF7 and PC3 cells showed that [Cu(L)Cl2]2 is an efficient cytotoxic agent whereas [Pt(L)Cl2] is not toxic, illustrating the crucial role played by the nature of the metal ion in the corresponding biological activity...
March 16, 2018: Dalton Transactions: An International Journal of Inorganic Chemistry
Yang Chen, Youyou Wang, Lujun Zhao, Ping Wang, Jifeng Sun, Rudi Bao, Chenghai Li, Ningbo Liu
Objective: To investigate the potential of HS-10182, a second-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), as a radiosensitizer in non-small cell lung cancer (NSCLC). Methods: Two cell lines of NSCLCs, A549 that possesses wild-type (WT) EGFRs and H1975 that possesses EGFR L858R/T790M double mutations, were treated with HS-10182 at various concentrations, and cell viabilities were determined using the MTS assay. The cells were tested by clonogenic survival assays to identify the radiosensitivity of both groups...
February 2018: Cancer Biology & Medicine
Francesca Vena, Ruochen Jia, Arman Esfandiari, Juan J Garcia-Gomez, Manuel Rodriguez-Justo, Jianguo Ma, Sakeena Syed, Lindsey Crowley, Brian Elenbaas, Samantha Goodstal, John A Hartley, Daniel Hochhauser
Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines...
February 20, 2018: Oncotarget
Barbara Pascucci, Alessandra Fragale, Veronica Marabitti, Giuseppe Leuzzi, Angelo Salvatore Calcagnile, Eleonora Parlanti, Annapaola Franchitto, Eugenia Dogliotti, Mariarosaria D'Errico
CS proteins have been involved in the repair of a wide variety of DNA lesions. Here, we analyse the role of CS proteins in DNA break repair by studying histone H2AX phosphorylation in different cell cycle phases and DNA break repair by comet assay in CS-A and CS-B primary and transformed cells. Following methyl methane sulphate treatment a significant accumulation of unrepaired single strand breaks was detected in CS cells as compared to normal cells, leading to accumulation of double strand breaks in S and G2 phases...
February 20, 2018: Oncotarget
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"