Read by QxMD icon Read

DMD gene therapy

Maria Siemionow, Joanna Cwykiel, Ahlke Heydemann, Jesus Garcia, Enza Marchese, Krzysztof Siemionow, Erzsebet Szilagyi
Duchenne Muscular Dystrophy (DMD) is a progressive and lethal disease caused by mutations of the dystrophin gene. Currently no cure exists. Stem cell therapies targeting DMD are challenged by limited engraftment and rejection despite the use of immunosuppression. There is an urgent need to introduce new stem cell-based therapies that exhibit low allogenic profiles and improved cell engraftment. In this proof-of-concept study, we develop and test a new human stem cell-based approach to increase engraftment, limit rejection, and restore dystrophin expression in the mdx/scid mouse model of DMD...
March 15, 2018: Stem Cell Reviews
Olivier Delalande, Anne-Elisabeth Molza, Raphael Dos Santos-Morais, Angélique Chéron, Émeline Pollet, Céline Raguenes-Nicol, Christophe Tascon, Emmanuel Giudice, Marine Guilbaud, Aurélie Nicolas, Arnaud Bondon, France Leturcq, Nicolas Férey, Marc Baaden, Javier Perez, Pierre Roblin, France Piétri-Rouxel, Jean-François Hubert, Mirjam Czjzek, Elisabeth Le Rumeur
Dystrophin, encoded by the DMD gene, is critical for maintaining plasma membrane integrity during muscle contraction events. Mutations in the DMD gene disrupting the reading frame prevent dystrophin production and result in the high severe Duchenne muscular dystrophy (DMD); in-frame internal deletions allow production of partly functional internally deleted dystrophin and result in the less severe Becker muscular dystrophy (BMD). Many known BMD deletions occur in dystrophin's central domain, generally considered to be a monotonous rod-shaped domain based on the knowledge of spectrin-family proteins...
March 13, 2018: Journal of Biological Chemistry
Masae Kato
Globally, genomics research is expected to enhance the health of patients with intractable diseases such as Duchenne muscular dystrophy (DMD). But how do patients perceive medical and scientific attempts at creating drugs and finding cure, and why? Since the 1990s, a number of clinical trials for patients of DMD have been organized. Among them are a gene therapy and exon skipping, and they indicate the possibility of finding therapies for DMD patients. Since 2011, Japanese medical institutions have been participating in Global Clinical Trials so that Japanese DMD patients can have access to them once developed...
April 2018: Anthropology & Medicine
Dongsheng Duan
Whole body systemic gene therapy is likely the most effective way to greatly reduce the disease burden of Duchenne muscular dystrophy (DMD), an X-linked inherited muscle disease that leads to premature death in early adulthood. Genetically, DMD is due to null mutation of the dystrophin gene, one of the largest genes in the genome. Recent studies have shown highly promising improvements in animal models with intravascular delivery of the engineered micro-dystrophin gene by adeno-associated virus (AAV). Several human trials are now started to advance AAV micro-dystrophin therapy to DMD patients...
February 20, 2018: Human Gene Therapy
Raphael Henrique Déa Cirino, Rosana Herminia Scola, Renata Dal-Prá Ducci, Ana Cristina Camarozano Wermelinger, Claudia Suemi Kamoi Kay, Paulo José Lorenzoni, Lineu Cesar Werneck, Eliane Ribeiro Carmes, Claudio Leinig Pereira da Cunha
INTRODUCTION: Early detection of left ventricular systolic dysfunction (LVSD) is important for therapeutic strategies for Duchenne muscular dystrophy (DMD) patients. We analyzed the myocardial strain by echocardiography for the early detection of LVSD and determined the predictors of early LVSD. METHODS: Cross-sectional study of forty DMD patients with normal left ventricular ejection fraction. Global longitudinal strain (GLS) was used to analyse subtle disturbances in the longitudinal contraction of the myocardium...
February 14, 2018: Muscle & Nerve
Vassili Crispi, Antonios Matsakas
Duchenne muscular dystrophy (DMD) is a progressive wasting disease of skeletal and cardiac muscles, representing one of the most common recessive fatal inherited genetic diseases with 1:3500-1:5000 in yearly incidence. It is caused by mutations in the DMD gene that encodes the membrane-associated dystrophin protein. Over the years, many have been the approaches to management of DMD, but despite all efforts, no effective treatment has yet been discovered. Hope for the development of potential therapeutics has followed the recent advances in genome editing and gene therapy...
January 31, 2018: Postgraduate Medical Journal
Daniel J Serie, Julia E Crook, Brian M Necela, Bianca C Axenfeld, Travis J Dockter, Gerardo Colon-Otero, Edith A Perez, E Aubrey Thompson, Nadine Norton
Doxorubicin and the ERBB2 targeted therapy, trastuzumab, are routinely used in the treatment of HER2+ breast cancer. In mouse models, doxorubicin is known to cause cardiomyopathy and conditional cardiac knock out of Erbb2 results in dilated cardiomyopathy and increased sensitivity to doxorubicin-induced cell death. In humans, these drugs also result in cardiac phenotypes, but severity and reversibility is highly variable. We examined the association of decline in left ventricular ejection fraction (LVEF) at 15,204 single nucleotide polymorphisms (SNPs) spanning 72 cardiomyopathy genes, in 800 breast cancer patients who received doxorubicin and trastuzumab...
May 4, 2017: Journal of Cardiovascular Development and Disease
Xionghao Liu, Mujun Liu, Lingqian Wu, Desheng Liang
Gene therapy provides hope for curing monogenic diseases caused by mutations in a single gene. Hemophilia and Duchenne muscular dystrophy (DMD) are ideal target diseases of gene therapy. Important advances have been made in clinical trials, such as AAV vectors in hemophilia and antisense in DMD. However, issues of high does of viral vectors, limited system delivery efficiency of antisense oligonucleotides (AOs) remain to be addressed. In addition, as an alternative strategy to classic gene addition, genome editing based on programmable nucleases has shown promise to in situ correct mutations...
January 24, 2018: Human Gene Therapy
Arash Salmaninejad, Saeed Farajzadeh Valilou, Hadi Bayat, Nader Ebadi, Abdolreza Daraei, Meysam Yousefi, Abolfazl Nesaei, Majid Mojarrad
Duchenne muscular dystrophy (DMD) is a lethal progressive pediatric muscle disorder and genetically inherited as an X-linked disease that caused by mutations in the dystrophin gene. DMD leads to progressive muscle weakness, degeneration, and wasting; finally, follows with the premature demise in affected individual's due to respiratory and/or cardiac failure typically by age of 30. For decades, scientists tried massively to find an effective therapy method, but there is no absolute cure currently for patients with DMD, nevertheless, recent advanced progressions on the treatment of DMD will be hopeful in the future...
January 19, 2018: International Journal of Neuroscience
Marion Wattin, Loïc Gaweda, Pascale Muller, Mathieu Baritaud, Charlotte Scholtes, Chloé Lozano, Kathrin Gieseler, Carole Kretz-Remy
The maintenance of proteome integrity is of primary importance in post-mitotic tissues such as muscle cells; thus, protein quality control mechanisms must be carefully regulated to ensure their optimal efficiency, a failure of these processes being associated with various muscular disorders. Duchenne muscular dystrophy (DMD) is one of the most common and severe forms of muscular dystrophies and is caused by mutations in the dystrophin gene. Protein quality control modulations have been diversely observed in degenerating muscles of patients suffering from DMD or in animal models of the disease...
January 7, 2018: International Journal of Molecular Sciences
M Siemionow, J Cwykiel, A Heydemann, J Garcia-Martinez, K Siemionow, E Szilagyi
Over the past decade different stem cell (SC) based approaches were tested to treat Duchenne Muscular Dystrophy (DMD), a lethal X-linked disorder caused by mutations in dystrophin gene. Despite research efforts, there is no curative therapy for DMD. Allogeneic SC therapies aim to restore dystrophin in the affected muscles; however, they are challenged by rejection and limited engraftment. Thus, there is a need to develop new more efficacious SC therapies. Chimeric Cells (CC), created via ex vivo fusion of donor and recipient cells, represent a promising therapeutic option for tissue regeneration and Vascularized Composite Allotransplantation (VCA) due to tolerogenic properties that eliminate the need for lifelong immunosuppression...
January 5, 2018: Stem Cell Reviews
Sara Benedetti, Narumi Uno, Hidetoshi Hoshiya, Martina Ragazzi, Giulia Ferrari, Yasuhiro Kazuki, Louise Anne Moyle, Rossana Tonlorenzi, Angelo Lombardo, Soraya Chaouch, Vincent Mouly, Marc Moore, Linda Popplewell, Kanako Kazuki, Motonobu Katoh, Luigi Naldini, George Dickson, Graziella Messina, Mitsuo Oshimura, Giulio Cossu, Francesco Saverio Tedesco
Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC)...
February 2018: EMBO Molecular Medicine
Gianna Móes Albuquerque-Pontes, Heliodora Leão Casalechi, Shaiane Silva Tomazoni, Andrey Jorge Serra, Cheila de Sousa Bacelar Ferreira, Rodrigo Barbosa de Oliveira Brito, Brunno Lemes de Melo, Adriane Aver Vanin, Kadma Karênina Damasceno Soares Monteiro, Humberto Dellê, Lucio Frigo, Rodrigo Labat Marcos, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior
This study aimed to analyze the protective effects of photobiomodulation therapy (PBMT) with combination of low-level laser therapy (LLLT) and light emitting diode therapy (LEDT) on skeletal muscle tissue to delay dystrophy progression in mdx mice (DMDmdx ). To this aim, mice were randomly divided into five different experimental groups: wild type (WT), placebo-control (DMDmdx ), PBMT with doses of 1 J (DMDmdx ), 3 J (DMDmdx ), and 10 J (DMDmdx ). PBMT was performed employing a cluster probe with 9 diodes (1 x 905nm super-pulsed laser diode; 4 x 875nm infrared LEDs; and 4 x 640nm red LEDs, manufactured by Multi Radiance Medical®, Solon - OH, USA), 3 times a week for 14 weeks...
December 5, 2017: Lasers in Medical Science
Tatianna Wai Ying Wong, Ronald D Cohn
BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by the lack of dystrophin due to mutations in the DMD gene. Since dystrophin is essential in maintaining the integrity of the sarcolemmal membrane, the absence of the protein leads to muscle damage and DMD disease manifestation. Currently, there is no cure with only symptomatic management available. OBJECTIVE: The most recent advancements in DMD therapies do not provide a permanent treatment for DMD...
2017: Current Gene Therapy
Shouta Miyatake, Yoshitaka Mizobe, Hotake Takizawa, Yuko Hara, Toshifumi Yokota, Shin'ichi Takeda, Yoshitsugu Aoki
Exon skipping therapy using synthetic DNA-like molecules called antisense oligonucleotides (ASOs) is a promising therapeutic candidate for overcoming the dystrophin mutation that causes Duchenne muscular dystrophy (DMD). This treatment involves splicing out the frame-disrupting segment of the dystrophin mRNA, which restores the reading frame and produces a truncated yet functional dystrophin protein. Phosphorodiamidate morpholino oligomer (PMO) is the safest ASO for patients among ASOs and has recently been approved under the accelerated approval pathway by the U...
2018: Methods in Molecular Biology
Jean K Mah
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. Mutations of the DMD gene destabilize the dystrophin associated glycoprotein complex in the sarcolemma. Ongoing mechanical stress leads to unregulated influx of calcium ions into the sarcoplasm, with activation of proteases, release of proinflammatory cytokines, and mitochondrial dysfunction. Cumulative damage and reparative failure leads to progressive muscle necrosis, fibrosis, and fatty replacement. Although there is presently no cure for DMD, scientific advances have led to many potential disease-modifying treatments, including dystrophin replacement therapies, upregulation of compensatory proteins, anti-inflammatory agents, and other cellular targets...
2018: Methods in Molecular Biology
Anna M L Coenen-Stass, Matthew J A Wood, Thomas C Roberts
miRNAs are small, noncoding RNAs that not only regulate gene expression within cells, but might also constitute promising extracellular biomarkers for a variety of pathologies, including the progressive muscle-wasting disorder Duchenne Muscular Dystrophy (DMD). A set of muscle-enriched miRNAs, the myomiRs (miR-1, miR-133, and miR-206) are highly elevated in the serum of patients with DMD and in dystrophin-deficient animal models. Furthermore, circulating myomiRs might be used as pharmacodynamic biomarkers, given that their levels can be restored towards wild-type levels following exon skipping therapy in dystrophic mice...
October 5, 2017: Trends in Molecular Medicine
Ana Gonçalves, Jorge Oliveira, Teresa Coelho, Ricardo Taipa, Manuel Melo-Pires, Mário Sousa, Rosário Santos
A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants...
October 3, 2017: Genes
Peter P Nghiem, Luca Bello, William B Stoughton, Sara Mata López, Alexander H Vidal, Briana V Hernandez, Katherine N Hulbert, Taylor R Gourley, Amanda K Bettis, Cynthia J Balog-Alvarez, Heather Heath-Barnett, Joe N Kornegay
Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level...
September 2017: Yale Journal of Biology and Medicine
Bianca Bianco, Denise Maria Christofolini, Gabriel Seixas Conceição, Caio Parente Barbosa
Duchenne muscular dystrophy is the most common muscle disease found in male children. Currently, there is no effective therapy available for Duchenne muscular dystrophy patients. Therefore, it is essential to make a prenatal diagnosis and provide genetic counseling to reduce the birth of such boys. We report a case of preimplantation genetic diagnosis associated with Duchenne muscular dystrophy. The couple E.P.R., 38-year-old, symptomatic patient heterozygous for a 2 to 47 exon deletion mutation in DMD gene and G...
September 21, 2017: Einstein
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"