Read by QxMD icon Read

Direct Reprogramming

Yuxin Shu, Yan Lu, Xiaojuan Pang, Wei Zheng, Yahong Huang, Jiahong Li, Jianguo Ji, Can Zhang, Pingping Shen
Peroxisome proliferator-activating receptor γ (PPARγ), a transcription factor, is involved in many important biological processes, including cell terminal differentiation, survival and apoptosis. However, the role of PPARγ, which regulates tumour promoter and oncogene expression, is not well understood in hepatocellular carcinoma (HCC). In the present study, based on evidence from clinical samples that phosphorylation of PPARγ at Ser84 is up-regulated in human liver tumours, we confirmed that phosphorylation of PPARγ was also significantly increased in an HCC mouse model and was increased by Mitogen-activated protein kinase (MEK)/ Extracellular-signal-regulated kinases (ERK) kinase...
October 19, 2016: Oncotarget
Qingxi Zhang, Wanling Chen, Sheng Tan, Tongxiang Lin
Parkinson's disease (PD) is the second most frequent neurodegenerative disease after Alzheimer's disease, which is characterized by low level of dopamine expressing in the striatum and deteriorated dopaminergic neurons (DAn) in Substantia nigra pars compacta (SNpc). Generation of PD-derived DAn including differentiation of human embryonic stem cell (hESC), human neural stem cell (hNSC), human induced pluripotent stem cell (hiPSC) and directly reprogramming provide an ideal tool to model PD, which created the possibilities of mimicking key essential pathological processes charactering single cell changes in vitro...
October 20, 2016: Human Gene Therapy
Shu Wen Wen, Jaclyn Sceneay, Luize G Lima, Christina Sf Wong, Melanie Becker, Sophie Krumeich, Richard J Lobb, Vanessa Castillo, Ke Ni Wong, Sarah Ellis, Belinda S Parker, Andreas Moller
Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here we use optical imaging to determine that exogenously administered fluorescently-labeled exosomes derived from highly metastatic murine breast cancer cells, distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45+ bone marrow-derived cells...
October 19, 2016: Cancer Research
Denghe Liu, Lu Sun, Xue Qin, Tianhua Liu, Shu Zhang, Yinkun Liu, Shan Li, Kun Guo
OBJECTIVE: Reprogramming energy metabolism has been defined as the ninth hallmark of cancer; glucose deprivation might be a novel, feasible and effective approach for cancer treatment. However, the comprehensive illustration of behavior alteration of hepatocellular carcinoma (HCC) cells induced by glucose restriction is lacking and associated molecular mechanism is still unclear. METHODS: Three human HCC cell lines were cultured with normal control (25.0 mM D-glucose) and low glucose (5...
September 2016: Discovery Medicine
Liu Liu, Ienglam Lei, Zhong Wang
PURPOSE OF REVIEW: Cardiovascular disease is the leading cause of death in the world today, and the death rate has remained virtually unchanged in the last 20 years (American Heart Association). This severe life-threatening disease underscores a critical need for developing novel therapeutic strategies to effectively treat this devastating disease. Cell-based therapy represents an extremely promising approach. Generation of induced cardiomyocytes (iCMs) directly from fibroblasts offers an attractive novel strategy for in-situ heart regeneration...
October 15, 2016: Current Opinion in Organ Transplantation
Alexandros Strikoudis, Charalampos Lazaris, Thomas Trimarchi, Antonio L Galvao Neto, Yan Yang, Panagiotis Ntziachristos, Scott Rothbart, Shannon Buckley, Igor Dolgalev, Matthias Stadtfeld, Brian D Strahl, Brian D Dynlacht, Aristotelis Tsirigos, Iannis Aifantis
Pluripotent embryonic stem cells (ESCs) self-renew or differentiate into all tissues of the developing embryo and cell-specification factors are necessary to balance gene expression. Here we delineate the function of the PHD-finger protein 5a (Phf5a) in ESC self-renewal and ascribe its role in regulating pluripotency, cellular reprogramming and myoblast specification. We demonstrate that Phf5a is essential for maintaining pluripotency, since depleted ESCs exhibit hallmarks of differentiation. Mechanistically, we attribute Phf5a function to the stabilization of the Paf1 transcriptional complex and control of RNA polymerase II elongation on pluripotency loci...
October 17, 2016: Nature Cell Biology
Pinar Kanlikilicer, Mohammed Saber, Recep Bayraktar, Rahul Mitra, Cristina Ivan, Burcu Aslan, Xinna Zhang, Justyna Filant, Andreia M Silva, Cristian Rodriguez-Aguayo, Emine Bayraktar, Martin Pichler, Bulent Ozpolat, George A Calin, Anil K Sood, Gabriel Lopez-Berestein
Cancer cells actively promote their tumorigenic behavior by reprogramming gene expression. Loading intraluminal vesicles with specific miRNAs and releasing them into the tumor microenvironment as exosomes is one mechanism of reprogramming whose regulation remains to be elucidated. Here, we report that miR-6126 is ubiquitously released in high abundance from both chemosensitive and chemoresistant ovarian cancer cells via exosomes. Overexpression of miR-6126 was confirmed in healthy ovarian tissue compared to ovarian cancer patient samples and correlated with better overall survival in high-grade serous ovarian cancer patients...
October 14, 2016: Cancer Research
Trey K Sato, Mary Tremaine, Lucas S Parreiras, Alexander S Hebert, Kevin S Myers, Alan J Higbee, Maria Sardi, Sean J McIlwain, Irene M Ong, Rebecca J Breuer, Ragothaman Avanasi Narasimhan, Mick A McGee, Quinn Dickinson, Alex La Reau, Dan Xie, Mingyuan Tian, Jennifer L Reed, Yaoping Zhang, Joshua J Coon, Chris Todd Hittinger, Audrey P Gasch, Robert Landick
The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically...
October 2016: PLoS Genetics
Sophie Guelfi, Hugues Duffau, Luc Bauchet, Bernard Rothhut, Jean-Philippe Hugnot
Glioblastomas are devastating and extensively vascularized brain tumors from which glioblastoma stem-like cells (GSCs) have been isolated by many groups. These cells have a high tumorigenic potential and the capacity to generate heterogeneous phenotypes. There is growing evidence to support the possibility that these cells are derived from the accumulation of mutations in adult neural stem cells (NSCs) as well as in oligodendrocyte progenitors. It was recently reported that GSCs could transdifferentiate into endothelial-like and pericyte-like cells both in vitro and in vivo, notably under the influence of Notch and TGFβ signaling pathways...
2016: Stem Cells International
Charles Yuen Yung Loh, Aline Yen Ling Wang, Huang-Kai Kao, Esteban Cardona, Sheng-Hao Chuang, Fu-Chan Wei
Traumatic peripheral nerve neurotmesis occurs frequently and functional recovery is often slow and impaired. Induced pluripotent stem cells (iPSCs) have shown much promise in recent years due to its regenerative properties similar to that of embryonic stem cells. However, the potential of iPSCs in promoting the functional recovery of a transected peripheral nerve is largely unknown. This study is the first to investigate in vivo effects of episomal iPSCs (EiPSCs) on peripheral nerve regeneration in a murine sciatic nerve transection model...
2016: PloS One
Stephanie Sprowl-Tanio, Amber N Habowski, Kira T Pate, Miriam M McQuade, Kehui Wang, Robert A Edwards, Felix Grun, Yung Lyou, Marian L Waterman
BACKGROUND: There is increasing evidence that oncogenic Wnt signaling directs metabolic reprogramming of cancer cells to favor aerobic glycolysis or Warburg metabolism. In colon cancer, this reprogramming is due to direct regulation of pyruvate dehydrogenase kinase 1 (PDK1) gene transcription. Additional metabolism genes are sensitive to Wnt signaling and exhibit correlative expression with PDK1. Whether these genes are also regulated at the transcriptional level, and therefore a part of a core metabolic gene program targeted by oncogenic WNT signaling, is not known...
2016: Cancer & Metabolism
Vito Iacobazzi, Vittoria Infantino, Alessandra Castegna, Alessio Menga, Erika Mariana Palmieri, Paolo Convertini, Ferdinando Palmieri
Significant metabolic changes occur in the shift from resting to activated cellular status in inflammation. Thus, changes in expression of a large number of genes and extensive metabolic reprogramming gives rise to acquisition of new functions (e.g. production of cytokines, intermediates for biosynthesis, lipid mediators, PGE, ROS and NO). In this context, mitochondrial carriers, which catalyze the transport of solute across mitochondrial membrane, change their expression to transport mitochondrially produced molecules, among which citrate and succinate, to be used as intracellular signalling molecules in inflammation...
October 11, 2016: Biological Chemistry
Herman Waldmann, Duncan Howie, Stephen Cobbold
A major goal of immunosuppressive therapies is to harness immune tolerance mechanisms so as to minimize unwanted side effects associated with protracted immunosuppressive therapy. Antibody blockade of lymphocyte coreceptor and costimulatory pathways in mice has demonstrated the principle that both naive and primed immune systems can be reprogrammed toward immunological tolerance. Such tolerance can involve the amplification of activity of regulatory T cells, and is maintained through continuous recruitment of such cells through processes of infectious tolerance...
August 2016: Microbiology Spectrum
Koki Fujimori, Toshiki Tezuka, Hiroyuki Ishiura, Jun Mitsui, Koichiro Doi, Jun Yoshimura, Hirobumi Tada, Takuya Matsumoto, Miho Isoda, Ryota Hashimoto, Nubutaka Hattori, Takuya Takahashi, Shinichi Morishita, Shoji Tsuji, Wado Akamatsu, Hideyuki Okano
Patient-specific induced pluripotent stem cells (iPSCs) facilitate understanding of the etiology of diseases, discovery of new drugs and development of novel therapeutic interventions. A frequently used starting source of cells for generating iPSCs has been dermal fibroblasts (DFs) isolated from skin biopsies. However, there are also numerous repositories containing lymphoblastoid B-cell lines (LCLs) generated from a variety of patients. To date, this rich bioresource of LCLs has been underused for generating iPSCs, and its use would greatly expand the range of targeted diseases that could be studied by using patient-specific iPSCs...
October 3, 2016: Molecular Brain
Didier Auboeuf
Understanding the molecular mechanisms behind the capacity of cancer cells to adapt to the tumor microenvironment and to anticancer therapies is a major challenge. In this context, cancer is believed to be an evolutionary process where random mutations and the selection process shape the mutational pattern and phenotype of cancer cells. This article challenges the notion of randomness of some cancer-associated mutations by describing molecular mechanisms involving stress-mediated biogenesis of mRNA-derived small RNAs able to target and increase the local mutation rate of the genomic loci they originate from...
August 10, 2016: Transcription
Matthew Z Anderson, Allison M Porman, Na Wang, Eugenio Mancera, Denis Huang, Christina A Cuomo, Richard J Bennett
Heritable epigenetic changes underlie the ability of cells to differentiate into distinct cell types. Here, we demonstrate that the fungal pathogen Candida tropicalis exhibits multipotency, undergoing stochastic and reversible switching between three cellular states. The three cell states exhibit unique cellular morphologies, growth rates, and global gene expression profiles. Genetic analysis identified six transcription factors that play key roles in regulating cell differentiation. In particular, we show that forced expression of Wor1 or Efg1 transcription factors can be used to manipulate transitions between all three cell states...
October 2016: PLoS Genetics
Lionel Berthoin, Bertrand Toussaint, Frédéric Garban, Audrey Le Gouellec, Benjamin Caulier, Benoît Polack, David Laurin
Ectopic expression of defined transcription factors (TFs) for cell fate handling has proven high potential interest in reprogramming differentiated cells, in particular for regenerative medicine, ontogenesis study and cell based modelling. Pluripotency or transdifferentiation induction as TF mediated differentiation is commonly produced by transfer of genetic information with safety concerns. The direct delivery of proteins could represent a safer alternative but still needs significant advances to be efficient...
September 30, 2016: International Journal of Pharmaceutics
Jihoon Shin, Hong-Duk Youn
In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintain the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs...
September 29, 2016: BMB Reports
Sarah F Becker, Sophie Jarriault
Elucidating the mechanisms underlying cell fate determination, cell identity maintenance and cell reprogramming in vivo is one of the main challenges in today's science. Such knowledge of fundamental importance will further provide new leads for early diagnostics and targeted therapy approaches both in regenerative medicine and cancer research. This review focuses on recent mechanistic findings and factors that influence the differentiated state of cells in direct reprogramming events, aka transdifferentiation...
September 27, 2016: Current Opinion in Genetics & Development
Laura Ferraiuolo, Kathrin Meyer, Thomas W Sherwood, Jonathan Vick, Shibi Likhite, Ashley Frakes, Carlos J Miranda, Lyndsey Braun, Paul R Heath, Ricardo Pineda, Christine E Beattie, Pamela J Shaw, Candice C Askwith, Dana McTigue, Brian K Kaspar
Oligodendrocytes have recently been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS). Here we show that, in vitro, mutant superoxide dismutase 1 (SOD1) mouse oligodendrocytes induce WT motor neuron (MN) hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls and patients with sporadic and familial ALS, using two different reprogramming methods. All ALS oligodendrocyte lines induced MN death through conditioned medium (CM) and in coculture...
September 29, 2016: Proceedings of the National Academy of Sciences of the United States of America
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"