Read by QxMD icon Read

Direct Reprogramming

Lucie Bacakova, Jana Zarubova, Martina Travnickova, Jana Musilkova, Julia Pajorova, Petr Slepicka, Nikola Slepickova Kasalkova, Vaclav Svorcik, Zdenka Kolska, Hooman Motarjemi, Martin Molitor
Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation...
March 18, 2018: Biotechnology Advances
Francesca Andriani, Maria Teresa Majorini, Miguel Mano, Elena Landoni, Rosalba Miceli, Federica Facchinetti, Mavis Mensah, Enrico Fontanella, Matteo Dugo, Mauro Giacca, Ugo Pastorino, Gabriella Sozzi, Domenico Delia, Luca Roz, Daniele Lecis
BACKGROUND: Fibroblasts are crucial mediators of tumor-stroma cross-talk through synthesis and remodeling of the extracellular matrix and production of multiple soluble factors. Nonetheless, little is still known about specific determinants of fibroblast pro-tumorigenic activity in lung cancer. Here, we aimed at understanding the role of miRNAs, which are often altered in stromal cells, in reprogramming fibroblasts towards a tumor-supporting phenotype. METHODS: We employed a co-culture-based high-throughput screening to identify specific miRNAs modulating the pro-tumorigenic potential of lung fibroblasts...
March 20, 2018: Journal of Hematology & Oncology
Yi-Chao Hsu, Yu-Ting Wu, Chia-Ling Tsai, Yau-Huei Wei
In mammalian cells, there are seven members of the sirtuin protein family (SIRT1-7). SIRT1, SIRT6, and SIRT7 catalyze posttranslational modification of proteins in the nucleus, SIRT3, SIRT4, and SIRT5 are in the mitochondria and SIRT2 is in the cytosol. SIRT1 can deacetylate the transcription factor SOX2 and regulate induced pluripotent stem cells (iPSCs) reprogramming through the miR-34a-SIRT1-p53 axis. SIRT2 can regulate the function of pluripotent stem cells through GSK3β. SIRT3 can positively regulate PPAR gamma coactivator 1-alpha (PGC-1α) expression during the differentiation of stem cells...
March 2018: Experimental Biology and Medicine
Lan Huang, Huaxi Xu, Guangyong Peng
Cellular energy metabolism not only promotes tumor cell growth and metastasis but also directs immune cell survival, proliferation and the ability to perform specific and functional immune responses within the tumor microenvironment. A better understanding of the molecular regulation of metabolism in different cell components in the tumor-suppressive microenvironment is critical for the development of effective strategies for human cancer treatments. Toll-like receptors (TLRs) have recently been recognized as critical factors involved in tumor pathogenesis, regulating both tumor cells and tumor-infiltrating innate and adaptive immune cells...
March 19, 2018: Cellular & Molecular Immunology
Dominique Lombardo, Françoise Silvy, Isabelle Crenon, Emmanuelle Martinez, Aurélie Collignon, Evelyne Beraud, Eric Mas
Pancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases. The purpose of this review is to shed light on connections between chronic pancreatitis, diabetes, and pancreatic adenocarcinomas by gaining an insight into BSDL and its variants...
February 23, 2018: Oncotarget
Pragati Chengappa, Kimheak Sao, Tia M Jones, Ryan J Petrie
Intracellular pressure, generated by actomyosin contractility and the directional flow of water across the plasma membrane, can rapidly reprogram cell shape and behavior. Recent work demonstrates that cells can generate intracellular pressure with a range spanning at least two orders of magnitude; significantly, pressure is implicated as an important regulator of cell dynamics, such as cell division and migration. Changes to intracellular pressure can dictate the mechanisms by which single human cells move through three-dimensional environments...
2018: International Review of Cell and Molecular Biology
Yuhan Wang, Craig Dorrell, Willscott E Naugler, Michael Heskett, Paul Spellman, Bin Li, Feorillo Galivo, Annelise Haft, Leslie Wakefield, Markus Grompe
Direct lineage reprogramming can convert readily available cells in the body into desired cell types for cell replacement therapy. This is usually achieved through forced activation or repression of lineage-defining factors or pathways. In particular, reprogramming toward the pancreatic β cell fate has been of great interest in the search for new diabetes therapies. It has been suggested that cells from various endodermal lineages can be converted to β-like cells. However, it is unclear how closely induced cells resemble endogenous pancreatic β cells and whether different cell types have the same reprogramming potential...
February 21, 2018: Molecular Therapy: the Journal of the American Society of Gene Therapy
Melissa Tomkins, Adi Kliot, Athanasius Fm Marée, Saskia A Hogenhout
Members of the Candidatus genus Phytoplasma are small bacterial pathogens that hijack their plant hosts via the secretion of virulence proteins (effectors) leading to a fascinating array of plant phenotypes, such as witch's brooms (stem proliferations) and phyllody (retrograde development of flowers into vegetative tissues). Phytoplasma depend on insect vectors for transmission, and interestingly, these insect vectors were found to be (in)directly attracted to plants with these phenotypes. Therefore, phytoplasma effectors appear to reprogram plant development and defence to lure insect vectors, similarly to social engineering malware, which employs tricks to lure people to infected computers and webpages...
March 13, 2018: Current Opinion in Plant Biology
Zhiyi Qin, Peter Stoilov, Xuegong Zhang, Yi Xing
Alternative first exons diversify the transcriptomes of eukaryotes by producing variants of the 5' Untranslated Regions (5'UTRs) and N-terminal coding sequences. Accurate transcriptome-wide detection of alternative first exons typically requires specialized experimental approaches that are designed to identify the 5' ends of transcripts. We developed a computational pipeline SEASTAR that identifies first exons from RNA-seq data alone then quantifies and compares alternative first exon usage across multiple biological conditions...
March 13, 2018: Nucleic Acids Research
Daniel J Dennis, Sisu Han, Carol Schuurmans
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate...
March 12, 2018: Brain Research
Filippo Cortesi, Gloria Delfanti, Andrea Grilli, Arianna Calcinotto, Francesca Gorini, Ferdinando Pucci, Roberta Lucianò, Matteo Grioni, Alessandra Recchia, Fabio Benigni, Alberto Briganti, Andrea Salonia, Michele De Palma, Silvio Bicciato, Claudio Doglioni, Matteo Bellone, Giulia Casorati, Paolo Dellabona
Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2+ , M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression...
March 13, 2018: Cell Reports
Y S Tan, K Sansanaphongpricha, M E P Prince, D Sun, G T Wolf, Y L Lei
The recent Food and Drug Administration's approval of monoclonal antibodies targeting immune checkpoint receptors (ICRs) for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) offers exciting promise to improve patient outcome and reduce morbidities. A favorable response to ICR blockade relies on an extensive collection of preexisting tumor-specific T cells in the tumor microenvironment (TME). ICR blockade reinvigorates exhausted CD8+ T cells and enhances immune killing. However, resistance to ICR blockade is observed in about 85% of patients with HNSCC, therefore highlighting the importance of characterizing the mechanisms underlying HNSCC immune escape and exploring combinatorial strategies to sensitize hypoimmunogenic cold HNSCC to ICR inhibition...
March 1, 2018: Journal of Dental Research
Yangyang Ma, Tong Yu, Yuanxing Cai, Huayan Wang
Derivation of bona fide porcine pluripotent stem cells is still a critical issue because porcine embryonic stem cells (ESCs) are not available yet, and most of the culture conditions to maintain porcine induced pluripotent stem cells (piPSCs) are based on conditions for mouse and human iPS cells. In this study, we generated a doxycycline-inducible porcine iPS cell line (DOX-iPSCs) and used it to screen the optimal culture condition to sustain the self-renewal of piPSCs. We found that LIF and b-FGF were required for porcine cell reprogramming, but were not essential cytokines for maintaining the self-renewal and pluripotency of piPSCs...
December 2018: Cell Death Discovery
Marcelo Bueno Batista, Govind Chandra, Rose Adele Monteiro, Emanuel Maltempi de Souza, Ray Dixon
Bacteria adjust the composition of their electron transport chain (ETC) to efficiently adapt to oxygen gradients. This involves differential expression of various ETC components to optimize energy generation. In Herbaspirillum seropedicae, reprogramming of gene expression in response to oxygen availability is controlled at the transcriptional level by three Fnr orthologs. Here, we characterised Fnr regulons using a combination of RNA-Seq and ChIP-Seq analysis. We found that Fnr1 and Fnr3 directly regulate discrete groups of promoters (Groups I and II, respectively), and that a third group (Group III) is co-regulated by both transcription factors...
February 26, 2018: Nucleic Acids Research
Waqar Islam, Muhammad Qasim, Ali Noman, Muhammad Adnan, Muhammad Tayyab, Taimoor Hassan Farooq, Huang Wei, Liande Wang
Plants are attacked by a large number of pathogens. To defend against these pathogens, plants activate or repress a vast array of genes. For genetic expression and reprogramming, host endogenous small RNAs (sRNAs) are the key factors. Among these sRNAs, microRNAs (miRNAs) mediate gene regulation through RNA silencing at the post-transcriptional level and play an essential role in the defense responses to biotic and abiotic stress. In the recent years, high-throughput sequencing has enabled the researchers to uncover the role of plant miRNAs during pathogen invasion...
March 7, 2018: Microbial Pathogenesis
Marianne G Rots, Albert Jeltsch
The introduction of CRISPR/Cas has resulted in a strong impulse for the field of gene-targeted epigenome reprogramming. In this approach EpiEditors are applied in cells, which consist of a DNA-binding part for targeting and a functional part to induce chromatin modifications at targeted genome loci. The accumulating evidence of epigenetic reprogramming of a given genomic locus resulting in gene expression changes indicated causal relationships of epigenetic marks instructing gene expression and opened the field for mainstream applications...
2018: Methods in Molecular Biology
Sung Don Lim, Won Cheol Yim, Degao Liu, Rongbin Hu, Xiaohan Yang, John C Cushman
Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight, and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number, and seed yield...
March 9, 2018: Plant Biotechnology Journal
Ciana Diskin, Eva M Pålsson-McDermott
Traditionally cellular respiration or metabolism has been viewed as catabolic and anabolic pathways generating energy and biosynthetic precursors required for growth and general cellular maintenance. However, growing literature provides evidence of a much broader role for metabolic reactions and processes in controlling immunological effector functions. Much of this research into immunometabolism has focused on macrophages, cells that are central in pro- as well as anti-inflammatory responses-responses that in turn are a direct result of metabolic reprogramming...
2018: Frontiers in Immunology
Vincent Taschereau-Dumouchel, Aurelio Cortese, Toshinori Chiba, J D Knotts, Mitsuo Kawato, Hakwan Lau
Can "hardwired" physiological fear responses (e.g., for spiders and snakes) be reprogramed unconsciously in the human brain? Currently, exposure therapy is among the most effective treatments for anxiety disorders, but this intervention is subjectively aversive to patients, causing many to drop out of treatment prematurely. Here we introduce a method to bypass the subjective unpleasantness in conscious exposure, by directly pairing monetary reward with unconscious occurrences of decoded representations of naturally feared animals in the brain...
March 6, 2018: Proceedings of the National Academy of Sciences of the United States of America
Ling Wang, Zongliang Jiang, Delun Huang, Jingyue Duan, Chang Huang, Shannon Sullivan, Kaneha Vali, Yexuan Yin, Ming Zhang, Jill Wegrzyn, Xiuchun Cindy Tian, Young Tang
BACKGROUND: The generation of induced pluripotent stem cells (iPSCs) has underdefined mechanisms. In addition, leukemia inhibitory factor (LIF) activated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is the master regulator for naïve-state pluripotency achievement and maintenance. However, the regulatory process to attain naïve pluripotent iPSCs is not well understood. RESULTS: We performed transcriptome analysis to dissect the genomic expression during mouse iPSC induction, with or without blocking the JAK/STAT3 activity...
March 6, 2018: BMC Genomics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"