Read by QxMD icon Read


Shogo Tanabe, Toshihide Yamashita
During brain development, the immune system mediates neurogenesis, gliogenesis and synapse formation. However, it remains unclear whether peripheral lymphocytes contribute to brain development. Here we identified the subtypes of lymphocytes that are present in neonatal mouse brains and investigated their functions. We found that B-1a cells, a subtype of B cells, were abundant in the neonatal mouse brain and infiltrated into the brain in a CXCL13-CXCR5-dependent manner. B-1a cells promoted the proliferation of oligodendrocyte-precursor cells (OPCs) in vitro, and depletion of B-1a cells from developing brains resulted in a reduction of numbers of OPCs and mature oligodendrocytes...
March 5, 2018: Nature Neuroscience
Jessie Chen, Stephanie Van Gulden, Tammy L McGuire, Andrew C Fleming, Chio Oka, John A Kessler, Chian-Yu Peng
Astrocytes perform a wide array of physiological functions including structural support, ion exchange, and neurotransmitter uptake. Despite this diversity, molecular markers that label subpopulations of astrocytes are limited, and mechanisms that generate distinct astrocyte subtypes remain unclear. Here we identified a Bone Morphogenetic Protein 4 (BMP4) signaling regulated protein, serine protease High temperature requirement A 1 (HtrA1), as a novel marker of forebrain astrocytes, but not of neural stem cells, in adult mice of both sexes...
February 24, 2018: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Zubair Ahmed Nizamudeen, Lisa Chakrabarti, Virginie Sottile
Fasudil is a clinically approved Rho-associated protein kinase (ROCK) inhibitor that has been used widely to treat cerebral consequences of subarachnoid hemorrhage. It is known to have a positive effect on animal models of neurological disorders including Parkinson's disease and stroke. However, its cellular effect on progenitor populations and differentiation is not clearly understood. While recent studies suggest that fasudil promotes the mobilization of neural stem cells (NSCs) from the subventricular zone in vivo and promotes the differentiation of the C17...
February 6, 2018: Stem Cell Research
Nagendran Muthusamy, Andrew Brumm, Xuying Zhang, S Thomas Carmichael, H Troy Ghashghaei
The stem cell source of neural and glial progenitors in the periventricular regions of the adult forebrain has remained uncertain and controversial. Using a cell specific genetic approach we rule out Foxj1+ ependymal cells as stem cells participating in neurogenesis and gliogenesis in response to acute injury or stroke in the mouse forebrain. Non stem- and progenitor-like responses of Foxj1+ ependymal cells to injury and stroke remain to be defined and investigated.
January 29, 2018: Scientific Reports
Hassan Marzban, Mario Manto, Jean Mariani
In recent years, there has been tremendous growth in research on cerebellar motor and non-motor functions. Cerebellum is particularly involved in the spectrum of neurodevelopmental diseases. The 8th International Symposium of the Society for Research on the Cerebellum and Ataxia (SRCA) was held in Winnipeg, Manitoba, (Canada) on May 24-26, 2017. The main theme of the 8th International Symposium was "Development of the Cerebellum and Neurodevelopmental Disorders." Advances in genetics, epigenetic, cerebellar neurogenesis, axonogenesis and gliogenesis, cerebellar developmental disorders including autism spectrum disorders (ASD), neuroimaging, cerebellar ataxias, medulloblastoma, and clinical investigation of cerebellar diseases were presented...
January 18, 2018: Cerebellum
D Ian Flitcroft, James Loughman, Christine F Wildsoet, Cathy Williams, Jeremy A Guggenheim
Purpose: To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods: Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i...
January 1, 2018: Investigative Ophthalmology & Visual Science
Sonu Singh, Akanksha Mishra, Sachi Bharti, Virendra Tiwari, Jitendra Singh, Parul, Shubha Shukla
Neurogenesis involves generation of functional newborn neurons from neural stem cells (NSCs). Insufficient formation or accelerated degeneration of newborn neurons may contribute to the severity of motor/nonmotor symptoms of Parkinson's disease (PD). However, the functional role of adult neurogenesis in PD is yet not explored and whether glycogen synthase kinase-3β (GSK-3β) affects multiple steps of adult neurogenesis in PD is still unknown. We investigated the possible underlying molecular mechanism of impaired adult neurogenesis associated with PD...
January 11, 2018: Molecular Neurobiology
Li He, Kun Yu, Fanghui Lu, Jiajia Wang, Laiman N Wu, Chuntao Zhao, Qianmei Li, Xianyao Zhou, Hanmin Liu, Dezhi Mu, Mei Xin, Mengsheng Qiu, Q Richard Lu
Bergmann glia facilitate granule neuron migration during development and maintain the cerebellar organization and functional integrity. At present, molecular control of Bergmann glia specification from cerebellar radial glia is not fully understood. In this report, we show that Zeb2 (a.k.a. Sip1 or Zfhx1b), a Mowat-Wilson-syndrome-associated transcriptional regulator, is highly expressed in Bergmann glia, but hardly detectable in astrocytes in the cerebellum. The mice lacking Zeb2 in cerebellar radial glia exhibit severe deficits in Bergmann glia specification, and develop cerebellar cortical lamination dysgenesis and locomotion defects...
January 11, 2018: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Pei-Pei Liu, Ya-Jie Xu, Zhao-Qian Teng, Chang-Mei Liu
The polycomb repressive complex 2 (PRC2) is responsible for catalyzing both di- and trimethylation of histone H3 at lysine 27 (H3K27me2/3). The subunits of PRC2 are widely expressed in the central nervous system (CNS). PRC2 as well as H3K27me2/3, play distinct roles in neuronal identity, proliferation and differentiation of neural stem/progenitor cells, neuronal morphology, and gliogenesis. Mutations or dysregulations of PRC2 subunits often cause neurological diseases. Therefore, PRC2 might represent a common target of different pathological processes that drive neurodegenerative diseases...
December 1, 2017: Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
Simona D Frederiksen, Kristian A Haanes, Karin Warfvinge, Lars Edvinsson
In order to understand the nature of the relationship between cerebral blood flow (CBF) and primary headaches, we have conducted a literature review with particular emphasis on the role of perivascular neurotransmitters. Primary headaches are in general considered complex polygenic disorders (genetic and environmental influence) with pathophysiological neurovascular alterations. Identified candidate headache genes are associated with neuro- and gliogenesis, vascular development and diseases, and regulation of vascular tone...
January 1, 2017: Journal of Cerebral Blood Flow and Metabolism
Monika Saxena, Nitin Agnihotri, Jonaki Sen
Bone morphogenetic protein (BMP) signaling has been implicated in the regulation of patterning of the forebrain and as a regulator of neurogenesis and gliogenesis in the mammalian cortex. However, its role in other aspects of cortical development in vivo remains unexplored. We hypothesized that BMP signaling might regulate additional processes during the development of cortical neurons after observing active BMP signaling in a spatiotemporally dynamic pattern in the mouse cortex. Our investigation revealed that BMP signaling specifically regulates the migration, polarity and the dendritic morphology of upper layer cortical neurons born at E15...
January 9, 2018: Development
Jinsoo Oh, Yongbo Kim, Lihua Che, Jeong Beom Kim, Gyeong Eon Chang, Eunji Cheong, Seok-Gu Kang, Yoon Ha
Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator)...
2017: PloS One
Eduardo Martin-Lopez, Kimiko Ishiguro, Charles A Greer
Piriform cortex (PC) is a 3-layer paleocortex receiving primary afferent input from the olfactory bulb. The past decade has seen significant progress in understanding the synaptic, cellular and functional organization of PC, but PC embryogenesis continues to be enigmatic. Here, using birthdating strategies and clonal analyses, we probed the early development and laminar specificity of neurogenesis/gliogenesis as it relates to the organization of the PC. Our data demonstrate a temporal sequence of laminar-specific neurogenesis following the canonical "inside-out" pattern, with the notable exception of PC Layer II which exhibited an inverse "outside-in" temporal neurogenic pattern...
November 9, 2017: Cerebral Cortex
Hirokazu Hashimoto, Wen Jiang, Takeshi Yoshimura, Kyeong-Hye Moon, Jinwoong Bok, Kazuhiro Ikenaka
In the mouse neural tube, sonic hedgehog (Shh) secreted from the floor plate (FP) and the notochord (NC) regulates ventral patterning of the neural tube, and later is essential for the generation of oligodendrocyte precursor cells (OPCs). During early development, the NC is adjacent to the neural tube and induces ventral domains in it, including the FP. In the later stage of development, during gliogenesis in the spinal cord, the pMN domain receives strong Shh signaling input. While this is considered to be essential for the generation of OPCs, the actual role of this strong input in OPC generation remains unclear...
November 6, 2017: Neurochemistry International
Elise Matuzelski, Jens Bunt, Danyon Harkins, Jonathan W C Lim, Richard M Gronostajski, Linda J Richards, Lachlan Harris, Michael Piper
During mouse spinal cord development, ventricular zone progenitor cells transition from producing neurons to producing glia at approximately embryonic day 11.5, a process known as the gliogenic switch. The transcription factors Nuclear Factor I (NFI) A and B initiate this developmental transition, but the contribution of a third NFI member, NFIX, remains unknown. Here, we reveal that ventricular zone progenitor cells within the spinal cord express NFIX after the onset of NFIA and NFIB expression, and after the gliogenic switch has occurred...
December 15, 2017: Developmental Biology
Seiji Miyata
The hypothalamic neurosecretory system synthesizes neuropeptides in hypothalamic nuclei and releases them from axonal terminals into the circulation in the neurohypophysis (NH) and median eminence (ME). This system plays a crucial role in regulating body fluid homeostasis and social behaviors as well as reproduction, growth, metabolism, and stress responses, and activity-dependent structural reorganization has been reported. Current knowledge on dynamic structural reorganization in the NH and ME, in which the axonal terminals of neurosecretory neurons directly contact the basement membrane (BM) of a fenestrated vasculature, is discussed herein...
2017: Frontiers in Endocrinology
Bhavana Muralidharan, Marc Keruzore, Saurabh J Pradhan, Basabdatta Roy, Ashwin S Shetty, Veena Kinare, Leora D'Souza, Upasana Maheshwari, Krishanpal Karmodiya, Agasthya Suresh, Sanjeev Galande, Eric J Bellefroid, Shubha Tole
Regulation of the neuron-glia cell-fate switch is a critical step in the development of the CNS. Previously, we demonstrated that Lhx2 is a necessary and sufficient regulator of this process in the mouse hippocampal primordium, such that Lhx2 overexpression promotes neurogenesis and suppresses gliogenesis, whereas loss of Lhx2 has the opposite effect. We tested a series of transcription factors for their ability to mimic Lhx2 overexpression and suppress baseline gliogenesis, and also to compensate for loss of Lhx2 and suppress the resulting enhanced level of gliogenesis in the hippocampus...
November 15, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Alan J Ryan, William A Lackington, Alan J Hibbitts, Austyn Matheson, Tijna Alekseeva, Anna Stejskalova, Phoebe Roche, Fergal J O'Brien
Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates...
October 4, 2017: Advanced Healthcare Materials
David Baglietto-Vargas, Elisabeth Sánchez-Mejias, Victoria Navarro, Sebastián Jimenez, Laura Trujillo-Estrada, Angela Gómez-Arboledas, Maria Sánchez-Mico, Raquel Sánchez-Varo, Marisa Vizuete, José Carlos Dávila, José Manuel García-Verdugo, Javier Vitorica, Antonia Gutierrez
Alzheimer's disease is a major neurodegenerative disorder that leads to severe cognitive deficits in the elderly population. Over the past two decades, multiple studies have focused on elucidating the causative factors underlying memory defects in Alzheimer's patients. In this regard, new evidence linking Alzheimer's disease-related pathology and neuronal stem cells suggests that hippocampal neurogenesis impairment is an important factor underlying these cognitive deficits. However, because of conflicting results, the impact of Aβ pathology on neurogenesis/gliogenesis remains unclear...
August 30, 2017: Scientific Reports
Shama Bansod, Ryoichiro Kageyama, Toshiyuki Ohtsuka
During mammalian neocortical development, neural stem/progenitor cells (NSCs) sequentially give rise to deep layer neurons and superficial layer neurons through mid- to late-embryonic stages, shifting to gliogenic phase at perinatal stages. Previously, we found that the Hes genes inhibit neuronal differentiation and maintain NSCs. Here, we generated transgenic mice that overexpress Hes5 in NSCs of the central nervous system, and found that the transition timing from deep to superficial layer neurogenesis was shifted earlier, while gliogenesis precociously occurred in the developing neocortex of Hes5-overexpressing mice...
September 1, 2017: Development
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"