keyword
MENU ▼
Read by QxMD icon Read
search

Fragile X and stem cell

keyword
https://www.readbyqxmd.com/read/29128445/the-promise-of-induced-pluripotent-stem-cells-for-neurodevelopmental-disorders
#1
REVIEW
Katrin Linda, Carol Fiuza, Nael Nadif Kasri
A major challenge in clinical genetics and medicine is represented by genetically and phenotypically highly diverse neurodevelopmental disorders, like for example intellectual disability and autism. Intellectual disability is characterized by substantial limitations in cognitive function and adaptive behaviour. At the cellular level, this is reflected by deficits in synaptic structure and plasticity and therefore has been coined as a synaptic disorder or "synaptopathy". In this review, we summarize the findings from recent studies in which iPSCs have been used to model specific neurodevelopmental syndromes, including Fragile X syndrome, Rett syndrome, Williams-Beuren syndrome and Phelan-McDermid syndrome...
November 8, 2017: Progress in Neuro-psychopharmacology & Biological Psychiatry
https://www.readbyqxmd.com/read/29040584/strategies-to-advance-drug-discovery-in-rare-monogenic-intellectual-disability-syndromes
#2
Nuwan C Hettige, Karla Manzano-Vargas, Malvin Jefri, Carl Ernst
Some intellectual disability (ID) syndromes are caused by a mutation in a single gene and have been the focus of therapeutic intervention attempts such as Fragile X and Rett Syndrome, albeit with limited success. The rate at which new drugs are discovered and tested in humans for ID is progressing at a relatively slow pace, and this is particularly true for rare diseases where so few patients make high-quality clinical trials challenging. We discuss how new advances in human stem cell reprogramming and gene editing can facilitate preclinical study design and propose new workflows for how the preclinical to clinical trajectory might proceed given the small number of subjects available in rare monogenic ID syndromes...
October 6, 2017: International Journal of Neuropsychopharmacology
https://www.readbyqxmd.com/read/28882193/fragile-x-mental-retardation-protein-regulates-skeletal-muscle-stem-cell-activity-by-regulating-the-stability-of-myf5-mrna
#3
Ryo Fujita, Victoria Zismanov, Jean-Marie Jacob, Solène Jamet, Krum Asiev, Colin Crist
BACKGROUND: Regeneration of adult tissues relies on adult stem cells that are primed to enter a differentiation program, while typically remaining quiescent. In mouse skeletal muscle, these features are reconciled by multiple translational control mechanisms that ensure primed muscle stem cells (MuSCs) are not activated. In quiescent MuSCs, this concept is illustrated by reversible microRNA silencing of Myf5 translation, mediated by microRNA-31 and fragile X mental retardation protein (FMRP)...
September 7, 2017: Skeletal Muscle
https://www.readbyqxmd.com/read/28794184/post-transcriptional-regulation-of-mouse-neurogenesis-by-pumilio-proteins
#4
Meng Zhang, Dong Chen, Jing Xia, Wenqi Han, Xiekui Cui, Nils Neuenkirchen, Gretchen Hermes, Nenad Sestan, Haifan Lin
Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function...
August 9, 2017: Genes & Development
https://www.readbyqxmd.com/read/28747889/distribution-of-silicified-microstructures-regulation-of-cinnamyl-alcohol-dehydrogenase-and-lodging-resistance-in-silicon-and-paclobutrazol-mediated-oryza-sativa
#5
Deivaseeno Dorairaj, Mohd Razi Ismail
Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si), a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiffness of the plant as a whole. Silicified cells provide the much needed strength to the culm to resist breaking. Lignin plays important roles in cell wall structural integrity, stem strength, transport, mechanical support, and plant pathogen defense...
2017: Frontiers in Physiology
https://www.readbyqxmd.com/read/28681147/therapeutic-effect-of-icariin-combined-with-stem-cells-on-postmenopausal-osteoporosis-in-rats
#6
Dao Tang, Cuiling Ju, Yanjie Liu, Fei Xu, Zhengguang Wang, Dongbo Wang
Osteoporosis is characterized by skeletal fragility and microarchitectural deterioration. The side effects of drugs to treat osteoporosis will negatively affect the health of patients. This study aimed to investigate the therapeutic effects of icariin combined with adipose-derived stem cells on osteoporosis in a postmenopausal osteoporosis model after ovariectomy in rats. After ovariectomy the rats were treated with icariin combined with adipose-derived stem cell transplantation. The levels of alkaline phosphatase, tartrate-resistant acid phosphatase, osteoprotegerin, and bone γ-carboxyglutamate protein in serum were determined by ELISA...
July 5, 2017: Journal of Bone and Mineral Metabolism
https://www.readbyqxmd.com/read/28578884/microrna-335-5p-plays-dual-roles-in-periapical-lesions-by-complex-regulation-pathways
#7
Junli Yue, Puyu Wang, Qingchun Hong, Qian Liao, Li Yan, Weizhe Xu, Xi Chen, Qinghua Zheng, Lan Zhang, Dingming Huang
INTRODUCTION: MicroRNA-335-5p has been reported to regulate osteogenic and chondrogenic differentiations of mesenchymal stem cells. The aim of this study was to explore the function and regulation mechanism of miR-335-5p in apical periodontitis (AP). METHODS: Total RNAs were extracted from human periodontal ligament fibroblasts (HPDLFs), 10 AP tissues, and 6 healthy periodontal ligament tissues using lysis buffer. Gene expression was detected using real-time polymerase chain reaction...
June 1, 2017: Journal of Endodontics
https://www.readbyqxmd.com/read/28523560/stem-cell-technology-for-epi-genetic-brain-disorders
#8
REVIEW
Renzo J M Riemens, Edilene S Soares, Manel Esteller, Raul Delgado-Morales
Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems...
2017: Advances in Experimental Medicine and Biology
https://www.readbyqxmd.com/read/28497783/bliss-is-a-versatile-and-quantitative-method-for-genome-wide-profiling-of-dna-double-strand-breaks
#9
Winston X Yan, Reza Mirzazadeh, Silvano Garnerone, David Scott, Martin W Schneider, Tomasz Kallas, Joaquin Custodio, Erik Wernersson, Yinqing Li, Linyi Gao, Yana Federova, Bernd Zetsche, Feng Zhang, Magda Bienko, Nicola Crosetto
Precisely measuring the location and frequency of DNA double-strand breaks (DSBs) along the genome is instrumental to understanding genomic fragility, but current methods are limited in versatility, sensitivity or practicality. Here we present Breaks Labeling In Situ and Sequencing (BLISS), featuring the following: (1) direct labelling of DSBs in fixed cells or tissue sections on a solid surface; (2) low-input requirement by linear amplification of tagged DSBs by in vitro transcription; (3) quantification of DSBs through unique molecular identifiers; and (4) easy scalability and multiplexing...
May 12, 2017: Nature Communications
https://www.readbyqxmd.com/read/28442243/abnormal-neural-precursor-cell-regulation-in-the-early-postnatal-fragile-x-mouse-hippocampus
#10
Mary Sourial, Laurie C Doering
The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis...
April 22, 2017: Brain Research
https://www.readbyqxmd.com/read/28223919/commentary-depletion-of-the-fragile-x-mental-retardation-protein-in-embryonic-stem-cells-alters-the-kinetics-of-neurogenesis
#11
COMMENT
Cara J Westmark
No abstract text is available yet for this article.
2017: Frontiers in Molecular Neuroscience
https://www.readbyqxmd.com/read/28204491/fragile-x-related-protein-1-fxr1p-regulates-proliferation-of-adult-neural-stem-cells
#12
Natalie E Patzlaff, Kelsey M Nemec, Sydney G Malone, Yue Li, Xinyu Zhao
Fragile X related protein 1 (FXR1P) is a member of the fragile X family of RNA-binding proteins, which includes FMRP and FXR2P. Both FMRP and FXR2P regulate neurogenesis, a process affected in a number of neurological and neuropsychiatric disorders, including fragile X syndrome. Although FXR1P has been implicated in various developmental processes and neuropsychiatric diseases, its role in neurodevelopment is not well understood. The goal of the present study was to elucidate the function of FXR1P in adult neurogenesis...
April 1, 2017: Human Molecular Genetics
https://www.readbyqxmd.com/read/28203608/modeling-fragile-x-syndrome-in-neurogenesis-an-unexpected-phenotype-and-a-novel-tool-for-future-therapies
#13
Barbara Bardoni, Maria Capovilla, Enzo Lalli
FMRP is an RNA-binding protein involved in synaptic translation. Its absence causes a form of intellectual disability, the Fragile X syndrome (FXS). Small neuroanatomical abnormalities, present both in human and mouse FMRP-deficient brains, suggest a subtle critical role of this protein in neurogenesis. Stable depletion of FMRP has been obtained in a mouse embryonic stem cell line Fmr1 (shFmr1 ES) that does not display morphological alterations, but an abnormal expression of a subset of genes mainly involved in neuronal differentiation and maturation...
2017: Neurogenesis (Austin, Tex.)
https://www.readbyqxmd.com/read/28167345/osteopetroses-emphasizing-potential-approaches-to-treatment
#14
Anna Teti, Michael J Econs
Osteopetroses are a heterogeneous group of rare genetic bone diseases sharing the common hallmarks of reduced osteoclast activity, increased bone mass and high bone fragility. Osteoclasts are bone resorbing cells that contribute to bone growth and renewal through the erosion of the mineralized matrix. Alongside the bone forming activity by osteoblasts, osteoclasts allow the skeleton to grow harmonically and maintain a healthy balance between bone resorption and formation. Osteoclast impairment in osteopetroses prevents bone renewal and deteriorates bone quality, causing atraumatic fractures...
September 2017: Bone
https://www.readbyqxmd.com/read/28137726/molecular-analyses-of-neurogenic-defects-in-a-human-pluripotent-stem-cell-model-of-fragile-x-syndrome
#15
Michael J Boland, Kristopher L Nazor, Ha T Tran, Attila Szücs, Candace L Lynch, Ryder Paredes, Flora Tassone, Pietro Paolo Sanna, Randi J Hagerman, Jeanne F Loring
New research suggests that common pathways are altered in many neurodevelopmental disorders including autism spectrum disorder; however, little is known about early molecular events that contribute to the pathology of these diseases. The study of monogenic, neurodevelopmental disorders with a high incidence of autistic behaviours, such as fragile X syndrome, has the potential to identify genes and pathways that are dysregulated in autism spectrum disorder as well as fragile X syndrome. In vitro generation of human disease-relevant cell types provides the ability to investigate aspects of disease that are impossible to study in patients or animal models...
March 1, 2017: Brain: a Journal of Neurology
https://www.readbyqxmd.com/read/28067165/gene-therapy-in-fanconi-anemia-a-matter-of-time-safety-and-gene-transfer-tool-efficiency
#16
Els Verhoeyen, Francisco José Román Rodríguez, François-Loïc Cosset, Camille Lévy, Paula Rio
Fanconi anemia (FA) is a rare genetic syndrome characterized by progressive marrow failure. Gene therapy by infusion of FA-corrected autologous hematopoietic stem cells (HSCs) may offer a potential cure since it is a monogenetic disease with mutations in the FANC genes, coding for DNA repair enzymes (See review[1]). However, the collection of hCD34 +-cells in FA patients implies particular challenges because of the reduced numbers of progenitor cells present in their bone marrow (BM)[2] or mobilized peripheral blood[3-5]...
January 9, 2017: Current Gene Therapy
https://www.readbyqxmd.com/read/28003464/nat1-promotes-translation-of-specific-proteins-that-induce-differentiation-of-mouse-embryonic-stem-cells
#17
Hayami Sugiyama, Kazutoshi Takahashi, Takuya Yamamoto, Mio Iwasaki, Megumi Narita, Masahiro Nakamura, Tim A Rand, Masato Nakagawa, Akira Watanabe, Shinya Yamanaka
Novel APOBEC1 target 1 (Nat1) (also known as "p97," "Dap5," and "Eif4g2") is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation...
January 10, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/27900874/human-pluripotent-stem-cells-in-modeling-human-disorders-the-case-of-fragile-x-syndrome
#18
Dan Vershkov, Nissim Benvenisty
Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS...
January 2017: Regenerative Medicine
https://www.readbyqxmd.com/read/27730449/integrated-transcriptome-analysis-of-human-ips-cells-derived-from-a-fragile-x-syndrome-patient-during-neuronal-differentiation
#19
Ping Lu, Xiaolong Chen, Yun Feng, Qiao Zeng, Cizhong Jiang, Xianmin Zhu, Guoping Fan, Zhigang Xue
Fragile X syndrome (FXS) patients carry the expansion of over 200 CGG repeats at the promoter of fragile X mental retardation 1 (FMR1), leading to decreased or absent expression of its encoded fragile X mental retardation protein (FMRP). However, the global transcriptional alteration by FMRP deficiency has not been well characterized at single nucleotide resolution, i.e., RNA-seq. Here, we performed in-vitro neuronal differentiation of human induced pluripotent stem (iPS) cells that were derived from fibroblasts of a FXS patient (FXS-iPSC)...
November 2016: Science China. Life Sciences
https://www.readbyqxmd.com/read/27713816/cgg-repeat-dynamics-and-fmr1-gene-silencing-in-fragile-x-syndrome-stem-cells-and-stem-cell-derived-neurons
#20
Yifan Zhou, Daman Kumari, Nicholas Sciascia, Karen Usdin
BACKGROUND: Fragile X syndrome (FXS), a common cause of intellectual disability and autism, results from the expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene to >200 repeats. Such expanded alleles, known as full mutation (FM) alleles, are epigenetically silenced in differentiated cells thus resulting in the loss of FMRP, a protein important for learning and memory. The timing of repeat expansion and FMR1 gene silencing is controversial. METHODS: We monitored the repeat size and methylation status of FMR1 alleles with expanded CGG repeats in patient-derived induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) that were grown for extended period of time either as stem cells or differentiated into neurons...
2016: Molecular Autism
keyword
keyword
24797
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"