keyword
MENU ▼
Read by QxMD icon Read
search

Experimental

keyword
https://www.readbyqxmd.com/read/28814060/a-soft-wearable-robot-for-the-shoulder-design-characterization-and-preliminary-testing
#1
Ciaran T O'Neill, Nathan S Phipps, Leonardo Cappello, Sabrina Paganoni, Conor J Walsh
In this paper, we present a soft wearable robot for the shoulder which has the potential to assist individuals suffering from a range of neuromuscular conditions affecting the shoulder to perform activities of daily living. This wearable robot combines two types of soft textile pneumatic actuators which were custom developed for this particular application to support the upper arm through shoulder abduction and horizontal flexion/extension. The advantage of a textile-based approach is that the robot can be lightweight, low-profile, comfortable and non-restrictive to the wearer, and easy to don like an item of clothing...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814053/mobio-a-5-dof-trans-humeral-robotic-prosthesis
#2
R Achintha M Abayasiri, D G Kanishka Madusanka, N M P Arachchige, A T S Silva, R A R C Gopura
In this paper, a 5 DOF trans-humeral robotic prosthesis: MoBio is proposed. MoBio includes 2 DOF at wrist which is rare in other trans-humeral prostheses. Through anthropometric features MoBio prosthetic arm can achieve elbow flexion/extension, forearm supination/pronation, wrist radial/ulnar deviation, wrist flexion/extension and compound motion of thumb and index finger. An EMG based control method which uses EMG signals of the biceps brachii and triceps brachii, is used with a motion switching mechanism to control the prosthesis...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814047/a-simple-tool-to-measure-spasticity-in-spinal-cord-injury-subjects
#3
Arash Arami, Nevio L Tagliamonte, Federica Tamburella, Hsieng-Yung Huang, Marco Molinari, Etienne Burdet
This work presents a wearable device and the algorithms for quantitative modelling of joint spasticity and its application in a pilot group of subjects with different levels of spinal cord injury. The device comprises light-weight instrumented handles to measure the interaction force between the subject and the physical therapist performing the tests, EMG sensors and inertial measurement units to measure muscle activity and joint kinematics. Experimental tests included the passive movement of different body segments, where the spasticity was expected, at different velocities...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814046/adaptive-control-of-an-actuated-ankle-foot-orthosis
#4
Victor Arnez-Paniagua, Hala Rifai, Yacine Amirat, Samer Mohammed
This paper deals with the control of an active ankle foot orthosis (AAFO) to assist the gait of paretic patients. The AAFO system is driven by both, the residual human torque delivered by the muscles spanning the ankle joint and the AAFO's actuator's torque. A projection-based model reference adaptive control is proposed to assist dorsiflexion and plantar-flexion of the ankle joint during daily living walking activities. Unlike most classical model-based controllers, the proposed one does not require any prior estimation of the system's (foot-AAFO) parameters...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814037/design-of-a-power-asymmetric-actuator-for-a-transtibial-prosthesis
#5
Harrison L Bartlett, Brian E Lawson, Michael Goldfarb
This paper presents the design and characterization of a power-asymmetric actuator for a transtibial prosthesis. The device is designed to provide the combination of: 1) joint locking, 2) high power dissipation, and 3) low power generation. This actuator functionality allows for a prosthesis to be designed with minimal mass and power consumption relative to a fully-powered robotic prosthesis while maintaining much of the functionality necessary for activities of daily living. The actuator achieves these design characteristics while maintaining a small form factor by leveraging a combination of electromechanical and hydraulic components...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814030/quantitative-evaluation-of-hand-functions-using-a-wearable-hand-exoskeleton-system
#6
Suin Kim, Jeongsoo Lee, Wookeun Park, Joonbum Bae
To investigate, improve, and observe the effect of rehabilitation therapy, many studies have been conducted on evaluating the motor function quantitatively by developing various types of robotic systems. Even though the robotic systems have been developed, functional evaluation of the hand has been rarely investigated, because it is difficult to install a number of actuators or sensors to the hand due to limited space around the fingers. Therefore, in this study, a hand exoskeleton was developed to satisfy the required specifications for evaluating the hand functions including spasticity of finger flexors, finger independence, and multi-digit synergy and algorithms to evaluate such functions were proposed...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814024/feedback-control-of-functional-electrical-stimulation-for-arbitrary-upper-extremity-movements
#7
Reza Sharif Razavian, Borna Ghannadi, John McPhee
Functional electrical stimulation (FES) is a type of neuroprosthesis in which muscles are stimulated by electrical pulses in order to compensate for the loss of voluntary movement control. Modulating the stimulation intensities to reliably generate movements is a challenging control problem. For the first time, this paper presents a feedback controller for FES to control arm movements in a 2D (table-top) task space. This feedback controller is based on a recent human motor control model, which uses muscle synergies to simplify the calculations and improve control performance...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814022/estimating-anatomical-wrist-joint-motion-with-a-robotic-exoskeleton
#8
Chad G Rose, Claudia K Kann, Ashish D Deshpande, Marcia K O'Malley
Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814010/multi-modal-myocontrol-testing-combined-force-and-electromyography
#9
Markus Nowak, Thomas Eiband, Claudio Castellini
Myocontrol, that is control of prostheses using bodily signals, has proved in the decades to be a surprisingly hard problem for the scientific community of assistive and rehabilitation robotics. In particular, traditional surface electromyography (sEMG) seems to be no longer enough to guarantee dexterity (i.e., control over several degrees of freedom) and, most importantly, reliability. Multi-modal myocontrol is concerned with the idea of using novel signal gathering techniques as a replacement of, or alongside, sEMG, to provide high-density and diverse signals to improve dexterity and make the control more reliable...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813981/a-magnetic-compatible-supernumerary-robotic-finger-for-functional-magnetic-resonance-imaging-fmri-acquisitions-device-description-and-preliminary-results
#10
Irfan Hussain, Emiliano Santarnecchi, Andrea Leo, Emiliano Ricciardi, Simone Rossi, Domenico Prattichizzo
The Supernumerary robotic limbs are a recently introduced class of wearable robots that, differently from traditional prostheses and exoskeletons, aim at adding extra effectors (i.e., arms, legs, or fingers) to the human user, rather than substituting or enhancing the natural ones. However, it is still undefined whether the use of supernumerary robotic limbs could specifically lead to neural modifications in brain dynamics. The illusion of owning the part of body has been already proven in many experimental observations, such as those relying on multisensory integration (e...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813974/a-cosmetic-prosthetic-digit-with-bioinspired-embedded-touch-feedback
#11
Diego Barone, Marco D'Alonzo, Marco Controzzi, Francesco Clemente, Christian Cipriani
Partial hand amputation is the most frequent amputation level worldwide, accounting for approximately 90% of all upper limb amputations. Passive cosmetic prostheses represent one of the possible choices for its treatment, probably the most affordable one. However, these devices restore very limited motor function and subtle sensory feedback. The latter is an important component for restoring the body schema. In this work we present a simple yet potentially effective and low cost cosmetic digital prosthesis that embeds touch feedback; we dubbed this DESC-finger...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813967/integration-of-serious-games-and-wearable-haptic-interfaces-for-neuro-rehabilitation-of-children-with-movement-disorders-a-feasibility-study
#12
Ilaria Bortone, Daniele Leonardis, Massimiliano Solazzi, Caterina Procopio, Alessandra Crecchi, Luca Bonfiglio, Antonio Frisoli
The past decade has seen the emergence of rehabilitation treatments using virtual reality environments. One of the advantages in using this technology is the potential to create positive motivation, by means of engaging environments and tasks shaped in the form of serious games. In this work, we propose a novel Neuro Rehabilitation System for children with movement disorders, that is based on serious games in immersive virtual reality with haptic feedback. The system design aims to enhance involvement and engagement of patients, to provide congruent multi-sensory afferent feedback during motor exercises, and to benefit from the flexibility of virtual reality in adapting exercises to the patient's needs...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813965/cheap-or-robust-the-practical-realization-of-self-driving-wheelchair-technology
#13
Maya Burhanpurkar, Mathieu Labbe, Charlie Guan, Francois Michaud, Jonathan Kelly
To date, self-driving experimental wheelchair technologies have been either inexpensive or robust, but not both. Yet, in order to achieve real-world acceptance, both qualities are fundamentally essential. We present a unique approach to achieve inexpensive and robust autonomous and semi-autonomous assistive navigation for existing fielded wheelchairs, of which there are approximately 5 million units in Canada and United States alone. Our prototype wheelchair platform is capable of localization and mapping, as well as robust obstacle avoidance, using only a commodity RGB-D sensor and wheel odometry...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813957/an-instrumented-object-for-studying-human-grasping
#14
R A Romeo, F Cordelia, A Davalli, R Sacchetti, E Guglielmelli, L Zollo
This paper proposes the use of an instrumented object for the study of the human grasping strategies. The proposed object is able to measure the grasping forces by means of three Force Sensitive Resistor (FSR) sensors and triaxial acceleration through an accelerometer. The object orientation angles (roll and pitch) can be estimated from the accelerometer output in quasi-static condition, whereas slippage events can be detected through the Power Spectrum Density (PSD) computation of the acceleration on at least one of the three axes...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813952/comparative-performance-analysis-of-m-imu-emg-and-voice-user-interfaces-for-assistive-robots
#15
Clemente Laureiti, Francesca Cordella, Francesco Scotto di Luzio, Stefano Saccucci, Angelo Davalli, Rinaldo Sacchetti, Loredana Zollo
People with a high level of disability experience great difficulties to perform activities of daily living and resort to their residual motor functions in order to operate assistive devices. The commercially available interfaces used to control assistive manipulators are typically based on joysticks and can be used only by subjects with upper-limb residual mobilities. Many other solutions can be found in the literature, based on the use of multiple sensory systems for detecting the human motion intention and state...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813940/recording-gaze-trajectory-of-wheelchair-users-by-a-spherical-camera
#16
Shigang Li, Tatsuya Fujiura, Isao Nakanishi
Wheelchairs are widely used in the facilities of rehabilitation. In this paper, we propose a method of recording the gaze trajectory of wheelchair users by using a spherical camera mounted on the wheelchairs. A spherical camera has a full field of view and can observe the entire surrounding scenes. First, the gaze point of a user sitting on a wheelchair is estimated from the corneal reflection image observed by a wearable eye camera. Then, the gaze point is mapped onto the full-view image captured by the spherical camera via feature matching...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813938/online-sparse-gaussian-process-based-human-motion-intent-learning-for-an-electrically-actuated-lower-extremity-exoskeleton
#17
Yi Long, Zhi-Jiang Du, Chao-Feng Chen, Wei Dong, Wei-Dong Wang
The most important step for lower extremity exoskeleton is to infer human motion intent (HMI), which contributes to achieve human exoskeleton collaboration. Since the user is in the control loop, the relationship between human robot interaction (HRI) information and HMI is nonlinear and complicated, which is difficult to be modeled by using mathematical approaches. The nonlinear approximation can be learned by using machine learning approaches. Gaussian Process (GP) regression is suitable for high-dimensional and small-sample nonlinear regression problems...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813920/compensating-for-telecommunication-delays-during-robotic-telerehabilitation
#18
Leonardo J Consoni, Adriano A G Siqueira, Hermano I Krebs
Rehabilitation robotic systems may afford better care and telerehabilitation may extend the use and benefits of robotic therapy to the home. Data transmissions over distance are bound by intrinsic communication delays which can be significant enough to deem the activity unfeasible. Here we describe an approach that combines unilateral robotic telerehabilitation and serious games. This approach has a modular and distributed design that permits different types of robots to interact without substantial code changes...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813913/emu-a-transparent-3d-robotic-manipulandum-for-upper-limb-rehabilitation
#19
Justin Fong, Vincent Crocher, Ying Tan, Denny Oetomo, Iven Mareels
This paper introduces the EMU, a three-dimensional robotic manipulandum for rehabilitation of the upper extremity for patients with neurological injury. The device has been designed to be highly transparent, have a large workspace, and allow the use of the hand for interaction with real-world objects to provide additional contextual cues during exercises. The transparency is achieved through the use of a capstan transmission for the drive joints; a hybrid serial parallel kinematics minimising moving inertia; and lightweight materials...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813911/design-and-kinematic-analysis-of-a-novel-upper-limb-exoskeleton-for-rehabilitation-of-stroke-patients
#20
Amin Zeiaee, Rana Soltani-Zarrin, Reza Langari, Reza Tafreshi
This paper details the design process and features of a novel upper limb rehabilitation exoskeleton named CLEVER (Compact, Low-weight, Ergonomic, Virtual/Augmented Reality Enhanced Rehabilitation) ARM. The research effort is focused on designing a lightweight and ergonomic upper-limb rehabilitation exoskeleton capable of producing diverse and perceptually rich training scenarios. To this end, the knowledge available in the literature of rehabilitation robotics is used along with formal conceptual design techniques...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
keyword
keyword
2436
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"