keyword
MENU ▼
Read by QxMD icon Read
search

Chemical master equation

keyword
https://www.readbyqxmd.com/read/28435938/obtaining-effective-rate-coefficients-to-describe-the-decomposition-kinetics-of-the-corannulene-oxyradical-at-high-temperatures
#1
Hongmiao Wang, Xiaoqing You, Mark A Blitz, Michael J Pilling, Struan H Robertson
Unimolecular reactions play an important role in combustion kinetics. An important task of reaction kinetic analysis is to obtain the phenomenological rate coefficients for unimolecular reactions based on the master equation approach. In most cases, the eigenvalues of the transition matrix describing collisional internal energy relaxation are of much larger magnitude than and well separated from the chemically significant eigenvalues, so that phenomenological rate coefficients may be unequivocally derived for incorporation in combustion mechanisms...
April 24, 2017: Physical Chemistry Chemical Physics: PCCP
https://www.readbyqxmd.com/read/28388111/stochastic-simulation-of-reaction-diffusion-systems-a-fluctuating-hydrodynamics-approach
#2
Changho Kim, Andy Nonaka, John B Bell, Alejandro L Garcia, Aleksandar Donev
We develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuatinghydrodynamics (FHD). For hydrodynamicsystems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poissonfluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i...
March 28, 2017: Journal of Chemical Physics
https://www.readbyqxmd.com/read/28383887/kinetics-of-thermal-unimolecular-decomposition-of-acetic-anhydride-an-integrated-deterministic-and-stochastic-model
#3
Tam V-T Mai, Minh V Duong, Hieu T Nguyen, Kuang C Lin, Lam K Huynh
An integrated deterministic and stochastic model within the master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) framework was first used to characterize temperature- and pressure-dependent behaviors of thermal decomposition of acetic anhydride in a wide range of conditions (i.e., 300-1500 K and 0.001-100 atm). Particularly, using potential energy surface and molecular properties obtained from high-level electronic structure calculations at CCSD(T)/CBS, macroscopic thermodynamic properties and rate coefficients of the title reaction were derived with corrections for hindered internal rotation and tunneling treatments...
April 14, 2017: Journal of Physical Chemistry. A
https://www.readbyqxmd.com/read/28341132/stochastic-modeling-and-numerical-simulation-of-gene-regulatory-networks-with-protein-bursting
#4
Manuel Pájaro, Antonio A Alonso, Irene Otero-Muras, Carlos Vázquez
Gene expression is inherently stochastic. Advanced single-cell microscopy techniques together with mathematical models for single gene expression led to important insights in elucidating the sources of intrinsic noise in prokaryotic and eukaryotic cells. In addition to the finite size effects due to low copy numbers, translational bursting is a dominant source of stochasticity in cell scenarios involving few short lived mRNA transcripts with high translational efficiency (as is typically the case for prokaryotes), causing protein synthesis to occur in random bursts...
March 21, 2017: Journal of Theoretical Biology
https://www.readbyqxmd.com/read/28320908/reaction-and-relaxation-at-surface-hotspots-using-molecular-dynamics-and-the-energy-grained-master-equation-to-describe-diamond-etching
#5
David R Glowacki, W J Rodgers, Robin Shannon, Struan H Robertson, Jeremy N Harvey
The extent to which vibrational energy transfer dynamics can impact reaction outcomes beyond the gas phase remains an active research question. Molecular dynamics (MD) simulations are the method of choice for investigating such questions; however, they can be extremely expensive, and therefore it is worth developing cheaper models that are capable of furnishing reasonable results. This paper has two primary aims. First, we investigate the competition between energy relaxation and reaction at 'hotspots' that form on the surface of diamond during the chemical vapour deposition process...
April 28, 2017: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
https://www.readbyqxmd.com/read/28306551/master-equations-and-the-theory-of-stochastic-path-integrals
#6
Markus F Weber, Erwin Frey
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations...
April 2017: Reports on Progress in Physics
https://www.readbyqxmd.com/read/28301761/reaction-mechanisms-on-multiwell-potential-energy-surfaces-in-combustion-and-atmospheric-chemistry
#7
David L Osborn
Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously...
March 15, 2017: Annual Review of Physical Chemistry
https://www.readbyqxmd.com/read/28268606/mechanisms-of-stochastic-focusing-and-defocusing-in-biological-reaction-networks-insight-from-accurate-chemical-master-equation-acme-solutions
#8
Gamze Gursoy, Anna Terebus, Youfang Cao, Jie Liang
Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
https://www.readbyqxmd.com/read/28226785/mechanisms-of-stochastic-focusing-and-defocusing-in-biological-reaction-networks-insight-from-accurate-chemical-master-equation-acme-solutions
#9
Gamze Giirsoy, Anna Terebus, Youfang Cao, Jie Liang, Gamze Gursoy, Anna Terebus, Youfang Cao, Jie Liang, Gamze Gursoy, Youfang Cao, Anna Terebus, Jie Liang
Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
https://www.readbyqxmd.com/read/28199109/nucleotide-selectivity-at-a-preinsertion-checkpoint-of-t7-rna-polymerase-transcription-elongation
#10
Chao E, Baogen Duan, Jin Yu
Nucleotide selection is crucial for transcription fidelity control, in particular, for viral T7 RNA polymerase (RNAP) lack of proofreading activity. It has been recognized that multiple kinetic checkpoints exist prior to full nucleotide incorporation. In this work, we implemented intensive atomistic molecular dynamics (MD) simulations to quantify how strong the nucleotide selection is at the initial checkpoint of an elongation cycle of T7 RNAP. The incoming nucleotides bind into a preinsertion site where a critical tyrosine residue locates nearby to assist the nucleotide selection...
April 20, 2017: Journal of Physical Chemistry. B
https://www.readbyqxmd.com/read/28166778/markov-state-models-of-gene-regulatory-networks
#11
Brian K Chu, Margaret J Tse, Royce R Sato, Elizabeth L Read
BACKGROUND: Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. RESULTS: The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models...
February 6, 2017: BMC Systems Biology
https://www.readbyqxmd.com/read/28156115/discussion-of-the-separation-of-chemical-and-relaxational-kinetics-of-chemically-activated-intermediates-in-master-equation-simulations
#12
Malte Döntgen, Kai Leonhard
Chemical activation of intermediates, such as hydrogen abstraction products, is emerging as a basis for a fully new reaction type: hot β-scission. While for thermally equilibrated intermediates chemical kinetics are typically orders of magnitude slower than relaxational kinetics, chemically activated intermediates raise the issue of inseparable chemical and relaxational kinetics. Here, this separation problem is discussed in the framework of master equation simulations, proposing three cases often encountered in chemistry: insignificant chemical activation, predominant chemical activation, and the transition between these two limits...
February 16, 2017: Journal of Physical Chemistry. A
https://www.readbyqxmd.com/read/28125716/numerical-simulations-reveal-randomness-of-cu-ii-induced-a%C3%AE-peptide-dimerization-under-conditions-present-in-glutamatergic-synapses
#13
Wojciech Goch, Wojciech Bal
The interactions between the Aβ1-40 molecules species and the copper ions (Cu(II)) were intensively investigated due to their potential role in the development of the Alzheimer Disease (AD). The rate and the mechanism of the Cu(II)-Aβ complexes formation determines the aggregation pathway of the Aβ species, starting from smaller but more cytotoxic oligomers and ending up in large Aβ plaques, being the main hallmark of the AD. In our study we exploit the existing knowledge on the Cu(II)-Aβ interactions and create the theoretical model of the initial phase of the copper- driven Aβ aggregation mechanism...
2017: PloS One
https://www.readbyqxmd.com/read/28088866/combined-experimental-and-computational-study-on-the-unimolecular-decomposition-of-jp-8-jet-fuel-surrogates-ii-n-dodecane-n-c12h26
#14
Long Zhao, Tao Yang, Ralf I Kaiser, Tyler P Troy, Musahid Ahmed, Joao Marcelo Ribeiro, Daniel Belisario-Lara, Alexander M Mebel
We investigated temperature-dependent products in the pyrolysis of helium-seeded n-dodecane, which represents a surrogate of the n-alkane fraction of Jet Propellant-8 (JP-8) aviation fuel. The experiments were performed in a high temperature chemical reactor over a temperature range of 1200 K to 1600 K at a pressure of 600 Torr, with in situ identification of the nascent products in a supersonic molecular beam using single photon vacuum ultraviolet (VUV) photoionization coupled with the analysis of the ions in a reflectron time-of-flight mass spectrometer (ReTOF)...
February 1, 2017: Journal of Physical Chemistry. A
https://www.readbyqxmd.com/read/28049303/anomalous-dielectric-relaxation-with-linear-reaction-dynamics-in-space-dependent-force-fields
#15
Tao Hong, Zhengming Tang, Huacheng Zhu
The anomalous dielectric relaxation of disordered reaction with linear reaction dynamics is studied via the continuous time random walk model in the presence of space-dependent electric field. Two kinds of modified reaction-subdiffusion equations are derived for different linear reaction processes by the master equation, including the instantaneous annihilation reaction and the noninstantaneous annihilation reaction. If a constant proportion of walkers is added or removed instantaneously at the end of each step, there will be a modified reaction-subdiffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term...
December 28, 2016: Journal of Chemical Physics
https://www.readbyqxmd.com/read/27991440/simulating-charge-transport-in-organic-semiconductors-and-devices-a-review
#16
C Groves
Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling...
December 19, 2016: Reports on Progress in Physics
https://www.readbyqxmd.com/read/27984171/stochastic-analysis-of-chemical-reaction-networks-using-linear-noise-approximation
#17
Luca Cardelli, Marta Kwiatkowska, Luca Laurenti
Stochastic evolution of Chemical Reactions Networks (CRNs) over time is usually analysed through solving the Chemical Master Equation (CME) or performing extensive simulations. Analysing stochasticity is often needed, particularly when some molecules occur in low numbers. Unfortunately, both approaches become infeasible if the system is complex and/or it cannot be ensured that initial populations are small. We develop a probabilistic logic for CRNs that enables stochastic analysis of the evolution of populations of molecular species...
October 28, 2016: Bio Systems
https://www.readbyqxmd.com/read/27959536/exact-product-formation-rates-for-stochastic-enzyme-kinetics
#18
Ramon Grima, André Leier
The rate of product formation is an important measure of the speed of enzyme reactions. Classical studies of enzyme reactions have been conducted in dilute solutions and under conditions that justified the substrate abundance assumption. However, such assumption is well-known to break down in the context of cellular biochemistry. Instead, the concentration of available substrate can become rate limiting. Here we use the chemical master equation to obtain expressions for the instantaneous and time averaged rate of product formation without invoking the conventional substrate abundance assumption...
December 27, 2016: Journal of Physical Chemistry. B
https://www.readbyqxmd.com/read/27923064/sparse-regression-based-structure-learning-of-stochastic-reaction-networks-from-single-cell-snapshot-time-series
#19
Anna Klimovskaia, Stefan Ganscha, Manfred Claassen
Stochastic chemical reaction networks constitute a model class to quantitatively describe dynamics and cell-to-cell variability in biological systems. The topology of these networks typically is only partially characterized due to experimental limitations. Current approaches for refining network topology are based on the explicit enumeration of alternative topologies and are therefore restricted to small problem instances with almost complete knowledge. We propose the reactionet lasso, a computational procedure that derives a stepwise sparse regression approach on the basis of the Chemical Master Equation, enabling large-scale structure learning for reaction networks by implicitly accounting for billions of topology variants...
December 2016: PLoS Computational Biology
https://www.readbyqxmd.com/read/27911933/driving-cells-to-the-desired-state-in-a-bimodal-distribution-through-manipulation-of-internal-noise-with-biologically-practicable-approaches
#20
Che-Chi Shu, Chen-Chao Yeh, Wun-Sin Jhang, Shih-Chiang Lo
The stochastic nature of gene regulatory networks described by Chemical Master Equation (CME) leads to the distribution of proteins. A deterministic bistability is usually reflected as a bimodal distribution in stochastic simulations. Within a certain range of the parameter space, a bistable system exhibits two stable steady states, one at the low end and the other at the high end. Consequently, it appears to have a bimodal distribution with one sub-population (mode) around the low end and the other around the high end...
2016: PloS One
keyword
keyword
23903
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"