Read by QxMD icon Read

Plant dna methylation

Atsushi Seta, Midori Tabara, Yuki Nishibori, Akihiro Hiraguri, Naoko Ohkama-Ohtsu, Tadashi Yokoyama, Satoshi Hara, Keisuke Yoshida, Toru Hisabori, Akihito Fukudome, Hisashi Koiwa, Hiromitsu Moriyama, Nobuhiro Takahashi, Toshiyuki Fukuhara
In Arabidopsis thaliana, small interfering RNAs (siRNAs) generated by two Dicer isoforms, DCL3 and DCL4, function in distinct epigenetic processes, i.e., RNA-directed DNA methylation and post-transcriptional gene silencing, respectively. Plants often respond to their environment by producing a distinct set of small RNAs; however, the mechanism for controlling the production of different siRNAs from the same dsRNA substrate remains unclear. We established a simple biochemical method to visualize the dsRNA-cleaving activities of DCL3 and DCL4 in cell-free extracts prepared from Arabidopsis seedlings...
January 9, 2017: Plant & Cell Physiology
Guifeng Wang, Claudia Köhler
Seeds provide up to 70% of the energy intake of the human population, emphasizing the relevance of understanding the genetic and epigenetic mechanisms controlling seed formation. In flowering plants, seeds are the product of a double fertilization event, leading to the formation of the embryo and the endosperm surrounded by maternal tissues. Analogous to mammals, plants undergo extensive epigenetic reprogramming during both gamete formation and early seed development, a process that is supposed to be required to enforce silencing of transposable elements and thus to maintain genome stability...
January 6, 2017: Journal of Experimental Botany
W Chen, Q Zhu, Y Liu, Q Zhang
Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense...
2017: Advances in Protein Chemistry and Structural Biology
Xiaoguo Zheng, Liang Chen, Hui Xia, Haibin Wei, Qiaojun Lou, Mingshou Li, Tiemei Li, Lijun Luo
Epigenetic mechanisms are crucial mediators of appropriate plant reactions to adverse environments, but their involvement in long-term adaptation is less clear. Here, we established two rice epimutation accumulation lines by applying drought conditions to 11 successive generations of two rice varieties. We took advantage of recent technical advances to examine the role of DNA methylation variations on rice adaptation to drought stress. We found that multi-generational drought improved the drought adaptability of offspring in upland fields...
January 4, 2017: Scientific Reports
Xiaoxia Ma, Ning Han, Chaogang Shao, Yijun Meng
Hints from animals point to the existence of two novel small RNA (sRNA) species surrounding the transcription start sites (TSSs) and the termini of the genes, respectively. In this study, we performed a comprehensive search for the two sRNA species named promoter-associated sRNAs (PASRs) and terminus-associated sRNAs (TASRs) in Arabidopsis. By using sRNA sequencing data from wild type plants and several mutants related to the sRNA biogenesis, Argonaute (AGO) 1- and AGO4-associated sRNA sequencing data, double-stranded RNA sequencing (dsRNA-seq) data, and DNA methylation profiling data, the biogenesis and action pathways of the PASRs and the TASRs were investigated...
2017: PloS One
Kemal Melik Taşkin, Aslıhan Özbilen, Fatih Sezer, Kaan Hürkan, Şebnem Güneş
In this study, we determined the structure of DNA methyltransferase (DNMT) genes in apomict and sexual Boechera species and investigated the expression levels during seed development. Protein and DNA sequences of diploid sexual Boechera stricta DNMT genes obtained from Phytozome 10.3 were used to identify the homologues in apomicts, Boechera holboellii and Boechera divaricarpa. Geneious R8 software was used to map the short-paired reads library of B. holboellii whole genome or B. divaricarpa transcriptome reads to the reference gene sequences...
December 20, 2016: Computational Biology and Chemistry
Joan Lee, Vrinda Kalia, Frederica Perera, Julie Herbstman, Tingyu Li, Jisheng Nie, L R Qu, Jie Yu, Deliang Tang
BACKGROUND: Polycyclic aromatic hydrocarbons (PAH) are carcinogenic, neurotoxic environmental pollutants generated during incomplete combustion of fossil fuel and other organic material. PAH exposure has been associated with adverse fetal development and epigenetic alterations in cord blood. Several molecular epidemiology studies have established PAH-DNA adducts as biomarkers of PAH exposure. OBJECTIVES: We investigated the relationship between LINE1 DNA methylation and PAH-DNA adduct levels in cord blood, and with neurodevelopmental outcomes...
December 24, 2016: Environment International
Mariyana Georgieva, Namik M Rashydov, Martin Hajduch
This pilot study was carried out to assess the effect of radio-contaminated Chernobyl environment on plant genome integrity 27 years after the accident. For this purpose, nuclei were isolated from root tips of the soybean seedlings harvested from plants grown in the Chernobyl area for seven generations. Neutral, neutral-alkaline, and methylation-sensitive comet assays were performed to evaluate the induction and repair of primary DNA damage and the epigenetic contribution to stress adaptation mechanisms. An increased level of single and double strand breaks in the radio-contaminated Chernobyl seedlings at the stage of primary root development was detected in comparison to the controls...
December 16, 2016: DNA Repair
Yukari Masuta, Kosuke Nozawa, Hiroki Takagi, Hiroki Yaegashi, Keisuke Tanaka, Tasuku Ito, Hideyuki Saito, Hisato Kobayashi, Wataru Matsunaga, Seiji Masuda, Atsushi Kato, Hidetaka Ito
A transposition of a heat-activated retrotransposon named ONSEN required compromise of a small RNA-mediated epigenetic regulation that includes RNA-directed DNA methylation (RdDM) machinery after heat treatment. In the current study, we analyzed the transcriptional and transpositional activation of ONSEN to better understand the underlying molecular mechanism involved in the maintenance and/or induction of transposon activation in plant tissue culture. We found the transposition of heat-primed ONSEN during tissue culture independently of RdDM mutation...
December 23, 2016: Plant & Cell Physiology
Feng Wang, Michael J Axtell
In plants, 24 nucleotide long heterochromatic siRNAs (het-siRNAs) transcriptionally regulate gene expression by RNA-directed DNA methylation (RdDM). The biogenesis of most het-siRNAs depends on the plant-specific RNA polymerase IV (Pol IV), and ARGONAUTE4 (AGO4) is a major het-siRNA effector protein. Through genome-wide analysis of sRNA-seq data sets, we found that AGO4 is required for the accumulation of a small subset of het-siRNAs. The accumulation of AGO4-dependent het-siRNAs also requires several factors known to participate in the effector portion of the RdDM pathway, including RNA POLYMERASE V (POL V), DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1)...
December 21, 2016: Plant Journal: for Cell and Molecular Biology
Garima Pandey, Chandra Bhan Yadav, Pranav Pankaj Sahu, Mehanathan Muthamilarasan, Manoj Prasad
Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative...
December 20, 2016: Plant Cell Reports
Amaryllis Vidalis, Daniel Živković, René Wardenaar, David Roquis, Aurélien Tellier, Frank Johannes
Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale...
December 20, 2016: Genome Biology
Quentin Gouil, David C Baulcombe
DNA methylation in plants is traditionally partitioned into CG, CHG and CHH contexts (with H any nucleotide but G). By investigating DNA methylation patterns in trinucleotide contexts in four angiosperm species, we show that such a representation hides spatial and functional partitioning of different methylation pathways and is incomplete. CG methylation (mCG) is largely context-independent whereas, at CHG motifs, there is under-representation of mCCG in pericentric regions of A. thaliana and tomato and throughout the chromosomes of maize and rice...
December 2016: PLoS Genetics
Brigitte Schönberger, Xiaochao Chen, Svenja Mager, Uwe Ludewig
The propagation via clonal stem cuttings is a frequent practice in tree plantations. Despite their clonal origin, the trees establish differently according to weather, temperature and nutrient availability, as well as the presence of various stresses. Here, clonal Populus trichocarpa (cv. Muhle Larson) cuttings from different sites were transferred into a common, fully nutrient supplied environment. Despite identical underlying genetics, stem cuttings derived from sites with lower phosphorus availability established worse, independent of phosphorus (P) level after transplantation...
2016: PloS One
Xueting Zhong, Zhan Qi Wang, Ruyuan Xiao, Yaqin Wang, Yan Xie, Xueping Zhou
: Geminiviruses have caused serious losses in crop production. To investigate the mechanisms underlying host defenses against geminiviruses, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic approach was used to explore the expression profiles of proteins in Nicotiana benthamiana (N. benthamiana) leaves in response to tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB) at an early phase. In total, 4155 proteins were identified and 272 proteins were changed differentially in response to TYLCCNV/TYLCCNB infection...
January 30, 2017: Journal of Proteomics
Sylvie Lahmy, Dominique Pontier, Natacha Bies-Etheve, Michèle Laudié, Suhua Feng, Edouard Jobet, Christopher J Hale, Richard Cooke, Mohamed-Ali Hakimi, Dimitar Angelov, Steven E Jacobsen, Thierry Lagrange
RNA polymerase V (Pol V) long noncoding RNAs (lncRNAs) have been proposed to guide ARGONAUTE4 (AGO4) to chromatin in RNA-directed DNA methylation (RdDM) in plants. Here, we provide evidence, based on laser UV-assisted zero-length cross-linking, for functionally relevant AGO4-DNA interaction at RdDM targets. We further demonstrate that Pol V lncRNAs or the act of their transcription are required to lock Pol V holoenzyme into a stable DNA-bound state that allows AGO4 recruitment via redundant glycine-tryptophan/tryptophan-glycine AGO hook motifs present on both Pol V and its associated factor, SPT5L...
December 1, 2016: Genes & Development
Jihua Xu, Karen K Tanino, Stephen J Robinson
Epigenetic inheritance was transmitted through selection over five generations of extreme early, but not late flowering time phenotypic lines in Fragaria vesca. Epigenetic variation was initially artificially induced using the DNA demethylation reagent 5-azacytidine (5-azaC). It is the first report to explore epigenetic variant selection and phenotypic trait inheritance in strawberry. Transmission frequency of these traits was determined across generations. The early flowering (EF4) and late stolon (LS) phenotypic traits were successfully transmitted across five and three generations through meiosis, respectively...
2016: Frontiers in Plant Science
Ping-Hung Hsieh, Shengbo He, Toby Buttress, Hongbo Gao, Matthew Couchman, Robert L Fischer, Daniel Zilberman, Xiaoqi Feng
Cytosine DNA methylation regulates the expression of eukaryotic genes and transposons. Methylation is copied by methyltransferases after DNA replication, which results in faithful transmission of methylation patterns during cell division and, at least in flowering plants, across generations. Transgenerational inheritance is mediated by a small group of cells that includes gametes and their progenitors. However, methylation is usually analyzed in somatic tissues that do not contribute to the next generation, and the mechanisms of transgenerational inheritance are inferred from such studies...
December 27, 2016: Proceedings of the National Academy of Sciences of the United States of America
Kyunghyuk Park, M Yvonne Kim, Martin Vickers, Jin-Sup Park, Youbong Hyun, Takashi Okamoto, Daniel Zilberman, Robert L Fischer, Xiaoqi Feng, Yeonhee Choi, Stefan Scholten
Cytosine methylation is a DNA modification with important regulatory functions in eukaryotes. In flowering plants, sexual reproduction is accompanied by extensive DNA demethylation, which is required for proper gene expression in the endosperm, a nutritive extraembryonic seed tissue. Endosperm arises from a fusion of a sperm cell carried in the pollen and a female central cell. Endosperm DNA demethylation is observed specifically on the chromosomes inherited from the central cell in Arabidopsis thaliana, rice, and maize, and requires the DEMETER DNA demethylase in Arabidopsis DEMETER is expressed in the central cell before fertilization, suggesting that endosperm demethylation patterns are inherited from the central cell...
December 27, 2016: Proceedings of the National Academy of Sciences of the United States of America
Nathan Pumplin, Alexis Sarazin, Pauline E Jullien, Nicolas G Bologna, Stefan Oberlin, Olivier Voinnet
Plant RNA silencing operates via RNA-directed DNA-methylation (RdDM) to repress transcription or by targeting mRNAs via posttranscriptional gene silencing (PTGS). These pathways rely on distinct Dicer-like (DCL) proteins that process double-stranded RNA (dsRNA) into small-interfering RNAs (siRNAs). Here, we explored the expression and subcellular localization of Arabidopsis thaliana DCL4. DCL4 expression predominates as a transcription start site isoform encoding a cytoplasmic protein, which also represents the ancestral form in plants...
November 2016: Plant Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"