keyword
MENU ▼
Read by QxMD icon Read
search

53bp1

keyword
https://www.readbyqxmd.com/read/29149412/the-translationally-controlled-tumor-protein-and-the-cellular-response-to-ionizing-radiation-induced-dna-damage
#1
Jie Zhang, Grace Shim, Sonia M de Toledo, Edouard I Azzam
The absorption of ionizing radiation by living cells can directly disrupt atomic structures, producing chemical and biological changes. It can also act indirectly through radiolysis of water, thereby generating reactive chemical species that may damage nucleic acids, proteins, and lipids. Together, the direct and indirect effects of radiation initiate a series of biochemical and molecular signaling events that may repair the damage or culminate in permanent physiological changes or cell death. In efforts to gain insight into the mechanisms underlying these effects, we observed a prominent upregulation of the Translationally Controlled Tumor Protein (TCTP) in low dose/low dose rate (137)Cs γ-irradiated cells that was associated with adaptive responses that reduced chromosomal damage to a level lower than what occurs spontaneously...
2017: Results and Problems in Cell Differentiation
https://www.readbyqxmd.com/read/29136592/human-sirtuin-3-sirt3-deacetylates-histone-h3-lysine-56-to-promote-nonhomologous-end-joining-repair
#2
Amrita Sengupta, Devyani Haldar
Human sirtuin 3 (SIRT3) is a conserved NAD(+) dependent deacetylase, which functions in important cellular processes including transcription, metabolism, oxidative stress response. It is a robust mitochondrial deacetylase; however, few studies have indicated its nuclear functions. Here we report interaction of SIRT3 with core histones and identified acetylated histone H3 lysine 56 (H3K56ac) as its novel substrate, in addition to known substrates acetylated H4K16 and H3K9. Further, we showed in response to DNA damage SIRT3 localizes to the repair foci colocalizing with γH2AX and nonhomologous end joining (NHEJ) marker p53-binding protein 1 (53BP1)...
November 8, 2017: DNA Repair
https://www.readbyqxmd.com/read/29133916/brca2-antagonizes-classical-and-alternative-nonhomologous-end-joining-to-prevent-gross-genomic-instability
#3
Jinhua Han, Chunyan Ruan, Michael S Y Huen, Jiadong Wang, Anyong Xie, Chun Fu, Ting Liu, Jun Huang
BRCA2-deficient cells exhibit gross genomic instability, but the underlying mechanisms are not fully understood. Here we report that inactivation of BRCA2 but not RAD51 destabilizes RPA-coated single-stranded DNA (ssDNA) structures at resected DNA double-strand breaks (DSBs) and greatly enhances the frequency of nuclear fragmentation following cell exposure to DNA damage. Importantly, these BRCA2-associated deficits are fueled by the aberrant activation of classical (c)- and alternative (alt)- nonhomologous end-joining (NHEJ), and rely on the well-defined DNA damage signaling pathway involving the pro-c-NHEJ factor 53BP1 and its downstream effector RIF1...
November 13, 2017: Nature Communications
https://www.readbyqxmd.com/read/29132682/-biomarkers-of-radiation-induced-dna-repair-processes
#4
REVIEW
Alexis Vallard, Chloé Rancoule, Jean-Baptiste Guy, Sophie Espenel, Sylvie Sauvaigo, Claire Rodriguez-Lafrasse, Nicolas Magné
The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death...
November 10, 2017: Bulletin du Cancer
https://www.readbyqxmd.com/read/29127375/dna-damage-induced-histone-h1-ubiquitylation-is-mediated-by-huwe1-and-stimulates-the-rnf8-rnf168-pathway
#5
I K Mandemaker, L van Cuijk, R C Janssens, H Lans, K Bezstarosti, J H Hoeijmakers, J A Demmers, W Vermeulen, J A Marteijn
The DNA damage response (DDR), comprising distinct repair and signalling pathways, safeguards genomic integrity. Protein ubiquitylation is an important regulatory mechanism of the DDR. To study its role in the UV-induced DDR, we characterized changes in protein ubiquitylation following DNA damage using quantitative di-Gly proteomics. Interestingly, we identified multiple sites of histone H1 that are ubiquitylated upon UV-damage. We show that UV-dependent histone H1 ubiquitylation at multiple lysines is mediated by the E3-ligase HUWE1...
November 10, 2017: Scientific Reports
https://www.readbyqxmd.com/read/29106372/53bp1-and-brca1-control-pathway-choice-for-stalled-replication-restart
#6
Yixi Xu, Shaokai Ning, Zheng Wei, Ran Xu, Xinlin Xu, Mengtan Xing, Rong Guo, Dongyi Xu
The cellular pathways that restart stalled replication forks are essential for genome stability and tumor prevention. However, how many of these pathways exist in cells and how these pathways are selectively activated remain unclear. Here, we describe two major fork restart pathways, and demonstrate that their selection is governed by 53BP1 and BRCA1, which are known to control the pathway choice to repair double-strand DNA breaks (DSBs). Specifically, 53BP1 promotes a fork cleavage-free pathway, whereas BRCA1 facilitates a break-induced replication (BIR) pathway coupled with SLX-MUS complex-mediated fork cleavage...
November 6, 2017: ELife
https://www.readbyqxmd.com/read/29103969/differentiation-of-human-induced-pluripotent-or-embryonic-stem-cells-decreases-the-dna-damage-repair-by-homologous-recombination
#7
Kalpana Mujoo, Raj K Pandita, Anjana Tiwari, Vijay Charaka, Sharmistha Chakraborty, Dharmendra Kumar Singh, Shashank Hambarde, Walter N Hittelman, Nobuo Horikoshi, Clayton R Hunt, Kum Kum Khanna, Alexander Y Kots, E Brian Butler, Ferid Murad, Tej K Pandita
The nitric oxide (NO)-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR) to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR) repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1)...
November 14, 2017: Stem Cell Reports
https://www.readbyqxmd.com/read/29053406/super-resolution-nanoscopy-imaging-applied-to-dna-double-strand-breaks
#8
Sofia D'Abrantes, Sarah Gratton, Pamela Reynolds, Verena Kriechbaumer, Joseph McKenna, Stephen Barnard, Dave Clarke, Stanley W Botchway
Genomic deoxyribonucleic acid (DNA) is continuously being damaged by endogenous processes such as metabolism or by exogenous events such as radiation. The specific phosphorylation of histone H2AX on serine residue 139, described as γ-H2AX, is an excellent indicator or marker of DNA double-strand breaks (DSBs). The yield of γ-H2AX (foci) is shown to have some correlation with the dose of radiation or other DSB-causing agents. However, there is some discrepancy in the DNA DSB foci yield among imaging and other methods such as gel electrophoresis...
October 20, 2017: Radiation Research
https://www.readbyqxmd.com/read/29047390/roles-of-bccip-deficiency-in-mammary-tumorigenesis
#9
Roberto Droz-Rosario, Huimei Lu, Jingmei Liu, Ning-Ang Liu, Shridar Ganesan, Bing Xia, Bruce G Haffty, Zhiyuan Shen
BACKGROUND: Dysregulated DNA repair and cell proliferation controls are essential driving forces in mammary tumorigenesis. BCCIP was originally identified as a BRCA2 and CDKN1A interacting protein that has been implicated in maintenance of genomic stability, cell cycle regulation, and microtubule dynamics. The aims of this study were to determine whether BCCIP deficiency contributes to mammary tumorigenesis, especially for a subset of breast cancers with 53BP1 abnormality, and to reveal the mechanistic implications of BCCIP in breast cancer interventions...
October 18, 2017: Breast Cancer Research: BCR
https://www.readbyqxmd.com/read/29036662/parp2-controls-double-strand-break-repair-pathway-choice-by-limiting-53bp1-accumulation-at-dna-damage-sites-and-promoting-end-resection
#10
Alexis Fouquin, Josée Guirouilh-Barbat, Bernard Lopez, Janet Hall, Mounira Amor-Guéret, Vincent Pennaneach
Double strand breaks (DSBs) are one of the most toxic lesions to cells. DSB repair by the canonical non-homologous end-joining (C-EJ) pathway involves minor, if any, processing of the broken DNA-ends, whereas the initiation of DNA resection channels the broken-ends toward DNA repair pathways using various lengths of homology. Mechanisms that control the resection initiation are thus central to the regulation to the choice of DSB repair pathway. Therefore, understanding the mechanisms which regulate the initiation of DNA end-resection is of prime importance...
October 3, 2017: Nucleic Acids Research
https://www.readbyqxmd.com/read/29018219/spatially-restricted-loading-of-brd2-at-dna-double-strand-breaks-protects-h4-acetylation-domains-and-promotes-dna-repair
#11
Ozge Gursoy-Yuzugullu, Chelsea Carman, Brendan D Price
The n-terminal tail of histone H4 recruits repair proteins, including 53BP1, to DNA double-strand breaks (DSB) and undergoes dynamic acetylation during DSB repair. However, how H4 acetylation (H4Ac) recruits repair proteins and reorganizes chromatin during DNA repair is unclear. Here, we show that the bromodomain protein BRD2 is recruited to DSBs. This recruitment requires binding of BRD2's tandem bromodomains to H4Ac, which is generated at DSBs by the Tip60/KAT5 acetyltransferase. Binding of BRD2 to H4Ac protects the underlying acetylated chromatin from attack by histone deacetylases and allows acetylation to spread along the flanking chromatin...
October 10, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28980862/inherited-dna-lesions-determine-g1-duration-in-the-next-cell-cycle
#12
Aleksandra Lezaja, Matthias Altmeyer
Replication stress is a major source of DNA damage and an important driver of cancer development. Replication intermediates that occur upon mild forms of replication stress frequently escape cell cycle checkpoints and can be transmitted through mitosis into the next cell cycle. The consequences of such inherited DNA lesions for cell fate and survival are poorly understood. By using time-lapse microscopy and quantitative image-based cytometry to simultaneously monitor inherited DNA lesions marked by the genome caretaker protein 53BP1 and cell cycle progression, we show that inheritance of 53BP1-marked lesions from the previous S-phase is associated with a prolonged G1 duration in the next cell cycle...
October 5, 2017: Cell Cycle
https://www.readbyqxmd.com/read/28978405/a-new-brct-binding-mode-in-topbp1-blm-helicase-interaction
#13
Georges Mer, Maria Victoria Botuyan
Tandem BRCT domains are phophoprotein binding modules. In this issue of Structure, Sun et al. (2017) show that a single BRCT domain in TopBP1 binds tightly and specifically to phosphorylated Bloom syndrome helicase (BLM). This work reveals a novel BRCT binding mode and suggests a similar mechanism for TopBP1 interaction with 53BP1.
October 3, 2017: Structure
https://www.readbyqxmd.com/read/28977920/chiral-platinum-ii-4-2-3-dihydroxypropyl-formamide-oxo-aporphine-foa-complexes-promote-tumor-cells-apoptosis-by-directly-targeting-g-quadruplex-dna-in-vitro-and-in-vivo
#14
Qi-Pin Qin, Jiao-Lan Qin, Ming Chen, Yu-Lan Li, Ting Meng, Jie Zhou, Hong Liang, Zhen-Feng Chen
Three platinum(II) complexes, 4 (LC-004), 5 (LC-005), and 6 (LC-006), with the chiral FOA ligands R/S-(±)-FOA (1), R-(+)-FOA (2) and S-(-)-FOA (3), respectively, were synthesized and characterized. As potential anti-tumor agents, these complexes show higher cytotoxicity to BEL-7404 cells than the HL-7702 normal cells. They are potential telomerase inhibitors that target c-myc and human telomeric G-quadruplex DNA. Compared to complexes 4 and 5, 6 exhibited higher binding affinities towards telomeric, c-myc G-quadruplex DNA and caspase-3/9, thereby inducing senescence and apoptosis to a greater extent in tumor cells...
September 22, 2017: Oncotarget
https://www.readbyqxmd.com/read/28973861/ctcf-prevents-genomic-instability-by-promoting-homologous-recombination-directed-dna-double-strand-break-repair
#15
Fengchao Lang, Xin Li, Wenhai Zheng, Zhuoran Li, Danfeng Lu, Guijun Chen, Daohua Gong, Liping Yang, Jinlin Fu, Peng Shi, Jumin Zhou
CTCF is an essential epigenetic regulator mediating chromatin insulation, long-range regulatory interactions, and the organization of large topological domains in the nucleus. Phenotypes of CTCF haploinsufficient mutations in humans, knockout in mice, and depletion in cells are often consistent with impaired genome stability, but a role of CTCF in genome maintenance has not been fully investigated. Here, we report that CTCF maintains genome stability, is recruited to sites of DNA damage, and promotes homologous recombination repair of DNA double-strand breaks (DSBs)...
October 10, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28969073/%C3%AE-h2ax-53bp1-and-rad51-protein-foci-changes-in-mesenchymal-stem-cells-during-prolonged-x-ray-irradiation
#16
Anastasia Tsvetkova, Ivan V Ozerov, Margarita Pustovalova, Anna Grekhova, Petr Eremin, Natalia Vorobyeva, Ilya Eremin, Andrey Pulin, Vadim Zorin, Pavel Kopnin, Sergey Leonov, Alex Zhavoronkov, Dmitry Klokov, Andreyan N Osipov
At high exposure levels ionizing radiation is a carcinogen. Little is known about how human stem cells, which are known to contribute to tumorigenesis, respond to prolonged radiation exposures. We studied formation of DNA double strand breaks, accessed as γH2AX and 53BP1 foci, in human mesenchymal stem cells (MSCs) exposed to either acute (5400 mGy/h) or prolonged (270 mGy/h) X-irradiation. We show a linear γH2AX and 53BP1 dose response for acute exposures. In contrast, prolonged exposure resulted in a dose-response curve that had an initial linear portion followed by a plateau...
September 8, 2017: Oncotarget
https://www.readbyqxmd.com/read/28958991/pathway-enriched-gene-signature-associated-with-53bp1-response-to-parp-inhibition-in-triple-negative-breast-cancer
#17
Saima Hassan, Amanda Esch, Tiera Liby, Joe W Gray, Laura M Heiser
Treatment of patients with triple negative (ER-negative, PR-negative, HER2-negative) breast cancer remains a challenge. Although PARP inhibitors are being evaluated in clinical trials, biomarkers are needed to identify patients that will most benefit from anti-PARP therapy. We determined the response of three PARP inhibitors: veliparib, olaparib, and talazoparib in a panel of eight triple-negative breast cancer cell lines. Therapeutic responses and cellular phenotypes were elucidated using high-content imaging and quantitative immunofluorescence to assess markers of DNA damage (53BP1) and apoptosis (cleaved-PARP)...
September 27, 2017: Molecular Cancer Therapeutics
https://www.readbyqxmd.com/read/28952912/measurement-of-dna-dependent-protein-kinase-phosphorylation-using-flow-cytometry-provides-a-reliable-estimate-of-dna-repair-capacity
#18
Andris Abramenkovs, Bo Stenerlöw
Uncontrolled generation of DNA double-strand breaks (DSBs) in cells is regarded as a highly toxic event that threatens cell survival. Radiation-induced DNA DSBs are commonly measured by pulsed-field gel electrophoresis, microscopic evaluation of accumulating DNA damage response proteins (e.g., 53BP1 or γ-H2AX) or flow cytometric analysis of γ-H2AX. The advantage of flow cytometric analysis is that DSB formation and repair can be studied in relationship to cell cycle phase or expression of other proteins. However, γ-H2AX is not able to monitor repair kinetics within the first 60 min postirradiation, a period when most DSBs undergo repair...
September 27, 2017: Radiation Research
https://www.readbyqxmd.com/read/28943310/asf1a-promotes-non-homologous-end-joining-repair-by-facilitating-phosphorylation-of-mdc1-by-atm-at-double-strand-breaks
#19
Kyung Yong Lee, Jun-Sub Im, Etsuko Shibata, Anindya Dutta
Double-strand breaks (DSBs) of DNA in eukaryotic cells are predominantly repaired by non-homologous end joining (NHEJ). The histone chaperone anti-silencing factor 1a (ASF1a) interacts with MDC1 and is recruited to sites of DSBs to facilitate the interaction of phospho-ATM with MDC1 and phosphorylation of MDC1, which are required for the recruitment of RNF8/RNF168 histone ubiquitin ligases. Thus, ASF1a deficiency reduces histone ubiquitination at DSBs, decreasing the recruitment of 53BP1, and decreases NHEJ, rendering cells more sensitive to DSBs...
October 5, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28930533/53bp1-a-guardian-for-centrosomal-integrity
#20
Haeyoung Kim, Hyungshin Yim
53BP1 is known as a mediator in DNA damage response and a regulator of DNA double-stranded breaks (DSBs) repair. 53BP1 was recently reported to be a centrosomal protein and a binding partner of mitotic polo-like kinase 1 (Plk1). The stability of 53BP1, in response to DSBs, is regulated by its phosphorylation, deubiquitination, and ubiquitination. During mitosis, 53BP1 is stabilized by phosphorylation at S380, a putative binding region with polo-box domain of Plk1, and deubiquitination by ubiquitin-specific protease 7 (USP7)...
January 1, 2018: Frontiers in Bioscience (Landmark Edition)
keyword
keyword
22934
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"