keyword
MENU ▼
Read by QxMD icon Read
search

Muscle regeneration

keyword
https://www.readbyqxmd.com/read/28218909/a-twist2-dependent-progenitor-cell-contributes-to-adult-skeletal-muscle
#1
Ning Liu, Glynnis A Garry, Stephen Li, Svetlana Bezprozvannaya, Efrain Sanchez-Ortiz, Beibei Chen, John M Shelton, Priscilla Jaichander, Rhonda Bassel-Duby, Eric N Olson
Skeletal muscle possesses remarkable regenerative potential due to satellite cells, an injury-responsive stem cell population located beneath the muscle basal lamina that expresses Pax7. By lineage tracing of progenitor cells expressing the Twist2 (Tw2) transcription factor in mice, we discovered a myogenic lineage that resides outside the basal lamina of adult skeletal muscle. Tw2(+) progenitors are molecularly and anatomically distinct from satellite cells, are highly myogenic in vitro, and can fuse with themselves and with satellite cells...
February 20, 2017: Nature Cell Biology
https://www.readbyqxmd.com/read/28218282/calcium-spikes-waves-and-oscillations-in-a-large-patterned-epithelial-tissue
#2
Ramya Balaji, Christina Bielmeier, Hartmann Harz, Jack Bates, Cornelia Stadler, Alexander Hildebrand, Anne-Kathrin Classen
While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells...
February 20, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28217409/muscle-derived-stem-cells-stimulate-muscle-myofiber-repair-and-counteract-fat-infiltration-in-a-diabetic-mouse-model-of-critical-limb-ischemia
#3
J Tsao, I Kovanecz, N Awadalla, R Gelfand, I Sinha-Hikim, R A White, N F Gonzalez-Cadavid
BACKGROUND: Critical Limb Ischemia (CLI) affects patients with Type 2 Diabetes (T2D) and obesity, with high risk of amputation and post-surgical mortality, and no effective medical treatment. Stem cell therapy, mainly with bone marrow mesenchymal, adipose derived, endothelial, hematopoietic, and umbilical cord stem cells, is promising in CLI mouse and rat models and is in clinical trials. Their general focus is on angiogenic repair, with no reports on the alleviation of necrosis, lipofibrosis, and myofiber regeneration in the ischemic muscle, or the use of Muscle Derived Stem Cells (MDSC) alone or in combination with pharmacological adjuvants, in the context of CLI in T2D...
December 2016: Journal of Stem Cell Research & Therapy
https://www.readbyqxmd.com/read/28215905/apobec2-negatively-regulates-myoblast-differentiation-in-muscle-regeneration
#4
Hideaki Ohtsubo, Yusuke Sato, Takahiro Suzuki, Wataru Mizunoya, Mako Nakamura, Ryuichi Tatsumi, Yoshihide Ikeuchi
Recently we found that the deficiency of APOBEC2, a member of apoB mRNA editing enzyme, catalytic polypeptide-like family, leads to a diminished muscle mass and increased myofiber with centrally-located nuclei known as dystrophic phenotypes. APOBEC2 expression is predominant in skeletal and cardiac muscles and elevated exclusively at the early-differentiation phase of wild-type (WT) myoblast cultures; however the physiological significance is still un-known. Here we show that APOBEC2 is a key negative regulator of myoblast differentiation in muscle regeneration...
February 12, 2017: International Journal of Biochemistry & Cell Biology
https://www.readbyqxmd.com/read/28213970/efficacy-and-safety-of-immuno-magnetically-sorted-smooth-muscle-progenitor-cells-derived-from-human-induced-pluripotent-stem-cells-for-restoring-urethral-sphincter-function
#5
Yanhui Li, Morgaine Green, Yan Wen, Yi Wei, Prachi Wani, Zhe Wang, Renee Reijo Pera, Bertha Chen
Human-induced pluripotent stem cells (hiPSCs)-based cell therapy holds promise for treating stress urinary incontinence (SUI). However, safety concerns, especially tumorgenic potential of residual undifferentiated cells in hiPSC derivatives, are major barriers for its clinical translation. An efficient, fast and clinical-scale strategy for purifying committed cells is also required. Our previous studies demonstrated the regenerative effects of hiPSC-derived smooth muscle progenitor cells (pSMCs) on the injured urethral sphincter in SUI, but the differentiation protocol required fluorescence-activated cell sorting (FACS) which is not practical for autologous clinical applications...
February 18, 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28213440/muscle-yap-is-a-regulator-of-neuromuscular-junction-formation-and-regeneration
#6
Kai Zhao, Chengyong Shen, Yisheng Lu, Zhihui Huang, Lei Li, Christopher D Rand, Jinxiu Pan, Xiang-Dong Sun, Zhibing Tan, Hongsheng Wang, Guanglin Xing, Yu Cao, Guoqing Hu, Jiliang Zhou, Wen-Cheng Xiong, Lin Mei
Yes-associated protein (Yap) is a major effector of the Hippo pathway that regulates cell proliferation and differentiation during development and restricts tissue growth in adult animals. However, its role in synapse formation remains poorly understood. In this study, we characterized Yap's role in the formation of neuromuscular junction (NMJ). In HSA-Yap(-/-) mice where Yap was mutated specifically in muscle cells, AChR clusters were smaller and were distributed in a broader region in the middle of muscle fibers, suggesting that muscle Yap is necessary for the size and location of AChR clusters...
February 17, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
https://www.readbyqxmd.com/read/28210626/osteogenic-differentiation-capacity-of-in-vitro-cultured-human-skeletal-muscle-for-expedited-bone-tissue-engineering
#7
Chunlei Miao, Lulu Zhou, Lufeng Tian, Yingjie Zhang, Wei Zhang, Fanghong Yang, Tianyi Liu, Shengjian Tang, Fangjun Liu
Expedited bone tissue engineering employs the biological stimuli to harness the intrinsic regenerative potential of skeletal muscle to trigger the reparative process in situ to improve or replace biological functions. When genetically modified with adenovirus mediated BMP2 gene transfer, muscle biopsies from animals have demonstrated success in regenerating bone within rat bony defects. However, it is uncertain whether the human adult skeletal muscle displays an osteogenic potential in vitro when a suitable biological trigger is applied...
2017: BioMed Research International
https://www.readbyqxmd.com/read/28209124/rna-seq-and-metabolomic-analyses-of-akt1-mediated-muscle-growth-reveals-regulation-of-regenerative-pathways-and-changes-in-the-muscle-secretome
#8
Chia-Ling Wu, Yoshinori Satomi, Kenneth Walsh
BACKGROUND: Skeletal muscle is a major regulator of systemic metabolism as it serves as the major site for glucose disposal and the main reservoir for amino acids. With aging, cachexia, starvation, and myositis, there is a preferential loss of fast glycolytic muscle fibers. We previously reported a mouse model in which a constitutively-active Akt transgene is induced to express in a subset of muscle groups leading to the hypertrophy of type IIb myofibers with an accompanying increase in strength...
February 16, 2017: BMC Genomics
https://www.readbyqxmd.com/read/28207619/iliac-crest-regeneration-a-retrospective-study-of-14-years-of-follow-up
#9
Anastasios Christodoulou, Achilleas Boutsiadis, Evangellos Christodoulou, Petros Antonarakos, Panagiotis Givissis, Ippokratis Hatzokos
STUDY DESIGN: This is a retrospective study analysis. OBJECTIVE: The purpose of our study was to evaluate the healing process of the ilium after being used as a bone graft donor site in the treatment of adolescent idiopathic scoliosis. SUMMARY OF BACKGROUND DATA: Iliac crest bone grafts have been proven to be the most reliable means for solid fusion in spine surgery. Nevertheless, few reports in the literature describe the ability of the iliac crest to regenerate...
March 2017: Clinical Spine Surgery
https://www.readbyqxmd.com/read/28203223/impaired-axonal-regeneration-in-diabetes-perspective-on-the-underlying-mechanism-from-in-vivo-and-in-vitro-experimental-studies
#10
REVIEW
Kazunori Sango, Hiroki Mizukami, Hidenori Horie, Soroku Yagihashi
Axonal regeneration after peripheral nerve injury is impaired in diabetes, but its precise mechanisms have not been elucidated. In this paper, we summarize the progress of research on altered axonal regeneration in animal models of diabetes and cultured nerve tissues exposed to hyperglycemia. Impaired nerve regeneration in animal diabetes can be attributed to dysfunction of neurons and Schwann cells, unfavorable stromal environment supportive of regenerating axons, and alterations of target tissues receptive to reinnervation...
2017: Frontiers in Endocrinology
https://www.readbyqxmd.com/read/28198733/clinical-relevance-of-sarcopenia-in-chronic-kidney-disease
#11
Ranjani N Moorthi, Keith G Avin
PURPOSE OF REVIEW: In this article, we review sarcopenia in chronic kidney disease (CKD). We aim to present how definitions of sarcopenia from the general population may pertain to those with CKD, its assessment by clinicians and emerging therapies for sarcopenia in CKD. For this review, we limit our description and recommendations to patients with CKD who are not on dialysis. RECENT FINDINGS: Poorer parameters of lean mass, strength and physical function are associated with worsening patient-centered outcomes such as limiting mobility, falls and mortality in CKD; however, the magnitude of these associations are different in those with and without CKD...
February 13, 2017: Current Opinion in Nephrology and Hypertension
https://www.readbyqxmd.com/read/28198139/peptidomics-analysis-of-transient-regeneration-in-the-neonatal-mouse-heart
#12
Yi Fan, Qijun Zhang, Hua Li, Zijie Cheng, Xing Li, Yumei Chen, Yahui Shen, Guixian Song, Lingmei Qian
Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration. In order to explore the changes of proteins, enzymes and peptides related to the transient regeneration, we used comparative petidomics technique to compare the endogenous peptides in the mouse heart of postnatal 1 and 7 days...
February 15, 2017: Journal of Cellular Biochemistry
https://www.readbyqxmd.com/read/28197667/discovery-and-progress-of-direct-cardiac-reprogramming
#13
REVIEW
Hidenori Kojima, Masaki Ieda
Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs)...
February 14, 2017: Cellular and Molecular Life Sciences: CMLS
https://www.readbyqxmd.com/read/28194397/a-novel-human-tissue-engineered-3-d-functional-vascularized-cardiac-muscle-construct
#14
Mani T Valarmathi, John W Fuseler, Jeffrey M Davis, Robert L Price
Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration...
2017: Frontiers in Cell and Developmental Biology
https://www.readbyqxmd.com/read/28193870/disruption-of-quercetin-metabolism-by-fungicide-affects-energy-production-in-honey-bees-apis-mellifera
#15
Wenfu Mao, Mary A Schuler, May R Berenbaum
Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway...
February 13, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28192527/the-efficacy-of-a-scaffold-free-bio-3d-conduit-developed-from-human-fibroblasts-on-peripheral-nerve-regeneration-in-a-rat-sciatic-nerve-model
#16
Hirofumi Yurie, Ryosuke Ikeguchi, Tomoki Aoyama, Yukitoshi Kaizawa, Junichi Tajino, Akira Ito, Souichi Ohta, Hiroki Oda, Hisataka Takeuchi, Shizuka Akieda, Manami Tsuji, Koichi Nakayama, Shuichi Matsuda
BACKGROUND: Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit. METHODS: We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer...
2017: PloS One
https://www.readbyqxmd.com/read/28191770/stem-cell-based-tissue-engineered-laryngeal-replacement
#17
Tahera Ansari, Peggy Lange, Aaron Southgate, Karin Greco, Carla Carvalho, Leanne Partington, Anthony Bullock, Sheila MacNeil, Mark W Lowdell, Paul D Sibbons, Martin A Birchall
Patients with laryngeal disorders may have severe morbidity relating to swallowing, vocalization, and respiratory function, for which conventional therapies are suboptimal. A tissue-engineered approach would aim to restore the vocal folds and maintain respiratory function while limiting the extent of scarring in the regenerated tissue. Under Good Laboratory Practice conditions, we decellularized porcine larynges, using detergents and enzymes under negative pressure to produce an acellular scaffold comprising cartilage, muscle, and mucosa...
February 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28188262/mapk-signaling-pathways-and-hdac3-activity-are-disrupted-during-emerin-null-myogenic-progenitor-differentiation
#18
Carol M Collins, Joseph Ellis, James M Holaska
Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD). Emerin is an integral inner nuclear membrane protein and a component of the nuclear lamina. EDMD is characterized by skeletal muscle wasting, cardiac conduction defects and tendon contractures. The failure to regenerate skeletal muscle is predicted to contribute to the skeletal muscle pathology of EDMD. We hypothesize muscle regeneration defects are caused by impaired muscle stem cell differentiation. Myogenic progenitors derived from emerin-null mice were used to confirm their impaired differentiation and analyze selected myogenic molecular pathways...
February 10, 2017: Disease Models & Mechanisms
https://www.readbyqxmd.com/read/28188178/activation-of-the-hypoxia-inducible-factor-1%C3%AE-promotes-myogenesis-through-the-noncanonical-wnt-pathway-leading-to-hypertrophic-myotubes
#19
Federica Cirillo, Giulia Resmini, Andrea Ghiroldi, Marco Piccoli, Sonia Bergante, Guido Tettamanti, Luigi Anastasia
Regeneration of skeletal muscle is a complex process that requires the activation of quiescent adult stem cells, called satellite cells, which are resident in hypoxic niches in the tissue. Hypoxia has been recognized as a key factor to maintain stem cells in an undifferentiated state. Herein we report that hypoxia plays a fundamental role also in activating myogenesis. In particular, we found that the activation of the hypoxia-inducible factor (HIF)-1α under hypoxia, in murine skeletal myoblasts, leads to activation of MyoD through the noncanonical Wnt/β-catenin pathway...
February 10, 2017: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
https://www.readbyqxmd.com/read/28186692/targeted-genome-engineering-to-control-vegf-expression-in-human-umbilical-cord-blood-derived-mesenchymal-stem-cells-potential-implications-for-the-treatment-of-myocardial-infarction
#20
Hyun-Min Cho, Pyung-Hwan Kim, Hyun-Kyung Chang, Yi-Ming Shen, Kwaku Bonsra, Byung-Jae Kang, Soo-Young Yum, Joo-Hyun Kim, So-Yeong Lee, Min-Cheol Choi, Hyongbum Henry Kim, Goo Jang, Je-Yoel Cho
Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) exhibit potency for the regeneration of infarcted hearts. Vascular endothelial growth factor (VEGF) is capable of inducing angiogenesis and can boost stem cell-based therapeutic effects. However, high levels of VEGF can cause abnormal blood vessel growth and hemangiomas. Thus, a controllable system to induce therapeutic levels of VEGF is required for cell therapy. We generated an inducible VEGF-secreting stem cell (VEGF/hUCB-MSC) that controls the expression of VEGF and tested the therapeutic efficacy in rat myocardial infarction (MI) model to apply functional stem cells to MI...
January 3, 2017: Stem Cells Translational Medicine
keyword
keyword
22711
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"