Read by QxMD icon Read

Ck2 kinase yeast

Emmanuelle Gouot, Wajid Bhat, Anne Rufiange, Eric Fournier, Eric Paquet, Amine Nourani
CK2 is an essential protein kinase implicated in various cellular processes. In this study, we address a potential role of this kinase in chromatin modulations associated with transcription. We found that CK2 depletion from yeast cells leads to replication-independent increase of histone H3K56 acetylation and global activation of H3 turnover in coding regions. This suggests a positive role of CK2 in maintenance/recycling of the histone H3/H4 tetramers during transcription. Interestingly, strand-specific RNA-seq analyses show that CK2 inhibits global cryptic promoters driving both sense and antisense transcription...
June 14, 2018: Nucleic Acids Research
Kenichiro Matsuzaki, Miki Shinohara
A DNA double strand break (DSB) is one of the most cytotoxic DNA lesions, but it can be repaired by non-homologous end joining (NHEJ) or by homologous recombination. The choice between these two repair pathways depends on the cell cycle stage. Although NHEJ constitutes a simple re-ligation reaction, the regulatory mechanism(s) controlling its activity has not been fully characterized. Lif1 is a regulatory subunit of the NHEJ-specific DNA ligase IV and interacts with Xrs2 of the MRX complex which is a key factor in DSB repair...
May 17, 2018: Biochemical and Biophysical Research Communications
Bojana Kravic, Angelika B Harbauer, Vanina Romanello, Luca Simeone, F-Nora Vögtle, Tobias Kaiser, Marion Straubinger, Danyil Huraskin, Martin Böttcher, Cristina Cerqua, Eva Denise Martin, Daniel Poveda-Huertes, Andreas Buttgereit, Adam J Rabalski, Dieter Heuss, Rüdiger Rudolf, Oliver Friedrich, David Litchfield, Michael Marber, Leonardo Salviati, Dimitrios Mougiakakos, Winfried Neuhuber, Marco Sandri, Chris Meisinger, Said Hashemolhosseini
In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast...
2018: Autophagy
Maciej Masłyk, Monika Janeczko, Aleksandra Martyna, Konrad Kubiński
CX-4945 is a selective inhibitor of protein kinase CK2 exhibiting clinical significance. Its antitumor properties arise from the abrogation of CK2-mediated pro-survival cellular pathways. The presented data reveal the influence of CX-4945 on the growth of yeast cells showing variable potency against Saccharomyces cerevisiae deletion strains with different contents of CK2 subunits. The catalytic subunit CK2α appears to sensitize yeast to the CX-4945 action. Moreover, the compound suppresses hyphal growth and cell adhesion of Candida albicans, thereby abolishing some hallmarks of invasiveness of the pathogen...
November 2017: Molecular and Cellular Biochemistry
Isabelle C Kos-Braun, Ilona Jung, Martin Koš
Ribosome biogenesis is a major energy-consuming process in the cell that has to be rapidly down-regulated in response to stress or nutrient depletion. The target of rapamycin 1 (Tor1) pathway regulates synthesis of ribosomal RNA (rRNA) at the level of transcription initiation. It remains unclear whether ribosome biogenesis is also controlled directly at the posttranscriptional level. We show that Tor1 and casein kinase 2 (CK2) kinases regulate a rapid switch between a productive and a non-productive pre-rRNA processing pathways in yeast...
March 2017: PLoS Biology
Adam J Johnson, Mohammad S Zaman, Filip Veljanoski, Alex A Phrakaysone, Suhua Li, Patrick J O'Doherty, Gayani Petersingham, Gabriel G Perrone, Mark P Molloy, Ming J Wu
Metal ions, biologically essential or toxic, are present in the surrounding environment of living organisms. Understanding their uptake, homeostasis or detoxification is critical in cell biology and human health. In this study, we investigated the role of protein kinase CK2 in metal toxicity using gene deletion strains of Saccharomyces cerevisiae against a panel of six metal ions. The deletion of CKA2, the yeast orthologue of mammalian CK2α', leads to a pronounced resistant phenotype against Zn2+ and Al3+ , whilst the deletion of CKB1 or CKB2 results in tolerance to Cr6+ and As3+ ...
March 22, 2017: Metallomics: Integrated Biometal Science
Konrad Kubiński, Maciej Masłyk
The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors...
February 7, 2017: Pharmaceuticals
Haruna Inoue, Shizuka Sugimoto, Yumiko Takeshita, Miho Takeuchi, Mitsuko Hatanaka, Koji Nagao, Takeshi Hayashi, Aya Kokubu, Mitsuhiro Yanagida, Junko Kanoh
An evolutionarily conserved protein Tel2 regulates a variety of stress signals. In mammals, TEL2 associates with TTI1 and TTI2 to form the Triple T (TTT: TEL2-TTI1-TTI2) complex as well as with all the phosphatidylinositol 3-kinase-like kinases (PIKKs) and the R2TP (Ruvbl1-Ruvbl2-Tah1-Pih1 in budding yeast)/prefoldin-like complex that associates with HSP90. The phosphorylation of TEL2 by casein kinase 2 (CK2) enables direct binding of PIHD1 (mammalian Pih1) to TEL2 and is important for the stability and the functions of PIKKs...
January 2017: Genes to Cells: Devoted to Molecular & Cellular Mechanisms
Sarah Spohrer, Elitsa Y Dimova, Thomas Kietzmann, Mathias Montenarh, Claudia Götz
The functions of the upstream stimulatory factors USF1 and USF2 are, like those of other transcription factors, regulated by reversible phosphorylation. Besides many other kinases also protein kinase CK2 phosphorylates USF1 but not USF2. In a yeast-two-hybrid screen, however, the non-catalytic CK2β subunit of CK2 was identified as a binding partner of USF2. This surprising observation prompted us to investigate the CK2/USF interaction in more detail in the present study. By using immunofluorescence analyses as well as co-immunoprecipitations we found that USF1 and USF2 bound to CK2α and CK2β exclusively in the nucleus, though CK2β and to a minor amount CK2α were also present in the cytoplasm...
February 2016: Cellular Signalling
Woo Kyu Kang, Yeong Hyeock Kim, Hyun Ah Kang, Ki-Sun Kwon, Jeong-Yoon Kim
Silent information regulator 2 (Sir2), an NAD(+)-dependent protein deacetylase, has been proposed to be a longevity factor that plays important roles in dietary restriction (DR)-mediated lifespan extension. In this study, we show that the Sir2's role for DR-mediated lifespan extension depends on cAMP-PKA and casein kinase 2 (CK2) signaling in yeast. Sir2 partially represses the transcription of lifespan-associated genes, such as PMA1 (encoding an H(+)-ATPase) and many ribosomal protein genes, through deacetylation of Lys 16 of histone H4 in the promoter regions of these genes...
2015: ELife
Jaehoon Lee, Robyn D Moir, Ian M Willis
The production of ribosomes and tRNAs for protein synthesis has a high energetic cost and is under tight transcriptional control to ensure that the level of RNA synthesis is balanced with nutrient availability and the prevailing environmental conditions. In the RNA polymerase (pol) III system in yeast, nutrients and stress affect transcription through a bifurcated signaling pathway in which protein kinase A (PKA) and TORC1 activity directly or indirectly, through downstream kinases, alter the phosphorylation state and function of the Maf1 repressor and Rpc53, a TFIIF-like subunit of the polymerase...
2015: PloS One
Jieyu Chen, Yifeng Wang, Fei Wang, Jian Yang, Mingxing Gao, Changying Li, Yingyao Liu, Yu Liu, Naoki Yamaji, Jian Feng Ma, Javier Paz-Ares, Laurent Nussaume, Shuqun Zhang, Keke Yi, Zhongchang Wu, Ping Wu
Phosphate transporters (PTs) mediate phosphorus uptake and are regulated at the transcriptional and posttranslational levels. In one key mechanism of posttranslational regulation, phosphorylation of PTs affects their trafficking from the endoplasmic reticulum (ER) to the plasma membrane. However, the kinase(s) mediating PT phosphorylation and the mechanism leading to ER retention of phosphorylated PTs remain unclear. In this study, we identified a rice (Oryza sativa) kinase subunit, CK2β3, which interacts with PT2 and PT8 in a yeast two-hybrid screen...
March 2015: Plant Cell
Manuel E Sanchez-Casalongue, Jaehoon Lee, Aviva Diamond, Scott Shuldiner, Robyn D Moir, Ian M Willis
Transcriptional regulation of ribosome and tRNA synthesis plays a central role in determining protein synthetic capacity and is tightly controlled in response to nutrient availability and cellular stress. In Saccharomyces cerevisiae, the regulation of ribosome and tRNA synthesis was recently shown to involve the Cdc-like kinase Kns1 and the GSK-3 kinase Mck1. In this study, we explored additional roles for these conserved kinases in processes connected to the target of rapamycin complex 1 (TORC1). We conducted a synthetic chemical-genetic screen in a kns1Δ mck1Δ strain and identified many novel rapamycin-hypersensitive genes...
March 13, 2015: Journal of Biological Chemistry
Tara Fresques, Brad Niles, Sofia Aronova, Huzefa Mogri, Taha Rakhshandehroo, Ted Powers
Complex sphingolipids are important components of eukaryotic cell membranes and, together with their biosynthetic precursors, including sphingoid long chain bases and ceramides, have important signaling functions crucial for cell growth and survival. Ceramides are produced at the endoplasmic reticulum (ER) membrane by a multicomponent enzyme complex termed ceramide synthase (CerS). In budding yeast, this complex is composed of two catalytic subunits, Lac1 and Lag1, as well as an essential regulatory subunit, Lip1...
January 16, 2015: Journal of Biological Chemistry
Harihar Basnet, Xue B Su, Yuliang Tan, Jill Meisenhelder, Daria Merkurjev, Kenneth A Ohgi, Tony Hunter, Lorraine Pillus, Michael G Rosenfeld
Post-translational histone modifications have a critical role in regulating transcription, the cell cycle, DNA replication and DNA damage repair. The identification of new histone modifications critical for transcriptional regulation at initiation, elongation or termination is of particular interest. Here we report a new layer of regulation in transcriptional elongation that is conserved from yeast to mammals. This regulation is based on the phosphorylation of a highly conserved tyrosine residue, Tyr 57, in histone H2A and is mediated by the unsuspected tyrosine kinase activity of casein kinase 2 (CK2)...
December 11, 2014: Nature
Geetha S Hewawasam, Mark Mattingly, Swaminathan Venkatesh, Ying Zhang, Laurence Florens, Jerry L Workman, Jennifer L Gerton
Cse4 is the centromeric histone H3 variant in budding yeast. Psh1 is an E3 ubiquitin ligase that controls Cse4 levels through proteolysis. Here we report that Psh1 is phosphorylated by the Cka2 subunit of casein kinase 2 (CK2) to promote its E3 activity for Cse4. Deletion of CKA2 significantly stabilized Cse4. Consistent with phosphorylation promoting the activity of Psh1, Cse4 was stabilized in a Psh1 phosphodepleted mutant strain in which the major phosphorylation sites were changed to alanines. Phosphorylation of Psh1 did not control Psh1-Cse4 or Psh1-Ubc3(E2) interactions...
October 17, 2014: Journal of Biological Chemistry
Nay M Tun, Patrick J O'Doherty, Zhong-Hua Chen, Xi-Yang Wu, Trevor D Bailey, Cindy Kersaitis, Ming J Wu
Genome-wide screening using gene deletion mutants has been widely carried out with numerous toxicants including oxidants and metal ions. The focus of such studies usually centres on identifying sensitive phenotypes against a given toxicant. Here, we screened the complete collection of yeast gene deletion mutants (5047) with increasing concentrations of aluminium sulphate (0.4, 0.8, 1.6 and 3.2 mM) in order to discover aluminium (Al(3+)) tolerant phenotypes. Fifteen genes were found to be associated with Al(3+) transport because their deletion mutants exhibited Al(3+) tolerance, including lem3Δ, hal5Δ and cka2Δ...
August 2014: Metallomics: Integrated Biometal Science
Lei Liu, Kaori Sakakibara, Quan Chen, Koji Okamoto
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation...
July 2014: Cell Research
Laura Itzel Quintas-Granados, César López-Camarillo, Jesús Fandiño Armas, Guillermo Mendoza Hernandez, María Elizbeth Alvarez-Sánchez
The initiation factor eIF5A in Trichomonas vaginalis (TveIF5A) is previously shown to undergo hypusination, phosphorylation and glycosylation. Three different pI isoforms of TveIF5A have been reported. The most acidic isoform (pI 5.2) corresponds to the precursor TveIF5A, whereas the mature TveIF5A appears to be the most basic isoform (pI 5.5). In addition, the intermediary isoform (pI 5.3) is found only under polyamine-depleted conditions and restored with exogenous putrescine. We propose that differences in PI are due to phosphorylation of the TveIF5A isoforms...
December 2013: Genomics, Proteomics & Bioinformatics
Andrea Venerando, Cinzia Franchin, Natasha Cant, Giorgio Cozza, Mario A Pagano, Kendra Tosoni, Ateeq Al-Zahrani, Giorgio Arrigoni, Robert C Ford, Anil Mehta, Lorenzo A Pinna
By mass spectrometry analysis of mouse Cystic Fibrosis Transmembrane-conductance Regulator (mCFTR) expressed in yeast we have detected 21 phosphopeptides accounting for 22 potential phospho-residues, 12 of which could be unambiguously assigned. Most are conserved in human CFTR (hCFTR) and the majority cluster in the Regulatory Domain, lying within consensus sequences for PKA, as identified in previous mammalian studies. This validates our yeast expression model. A number of phospho-residues were novel and human conserved, notably mouse Ser670, Ser723, Ser737, and Thr1467, that all lie in acidic sequences, compatible with their phosphorylation by protein kinase CK2...
2013: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"